Über diesen Kurs

9,523 kürzliche Aufrufe
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Fortgeschritten“
Ca. 14 Stunden zum Abschließen
Englisch
Untertitel: Englisch
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Fortgeschritten“
Ca. 14 Stunden zum Abschließen
Englisch
Untertitel: Englisch

von

New York University-Logo

New York University

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1

Woche 1

4 Stunden zum Abschließen

Black-Scholes-Merton model, Physics and Reinforcement Learning

4 Stunden zum Abschließen
13 Videos (Gesamt 103 min)
13 Videos
Specialization Prerequisites7m
Interview with Rossen Roussev14m
Reinforcement Learning and Ptolemy's Epicycles5m
PDEs in Physics and Finance5m
Competitive Market Equilibrium Models in Finance5m
I Certainly Hope You Are Wrong, Herr Professor!7m
Risk as a Science of Fluctuation3m
Markets and the Heat Death of the Universe3m
Option Trading and RL14m
Liquidity9m
Modeling Market Frictions9m
Modeling Feedback Frictions10m
1 praktische Übung
Assignment 12h
Woche
2

Woche 2

3 Stunden zum Abschließen

Reinforcement Learning for Optimal Trading and Market Modeling

3 Stunden zum Abschließen
8 Videos (Gesamt 73 min)
8 Videos
Invisible Hand5m
GBM and Its Problems9m
The GBM Model: An Unbounded Growth Without Defaults9m
Dynamics with Saturation: The Verhulst Model7m
The Singularity is Near9m
What are Defaults?11m
Quantum Equilibrium-Disequilibrium11m
1 praktische Übung
Assignment 22h
Woche
3

Woche 3

3 Stunden zum Abschließen

Perception - Beyond Reinforcement Learning

3 Stunden zum Abschließen
8 Videos (Gesamt 60 min)
8 Videos
Market Dynamics and IRL5m
Diffusion in a Potential: The Langevin Equation8m
Classical Dynamics7m
Potential Minima and Newton's Law4m
Classical Dynamics: the Lagrangian and the Hamiltonian7m
Langevin Equation and Fokker-Planck Equations9m
The Fokker-Planck Equation and Quantum Mechanics12m
1 praktische Übung
Assignment 32h
Woche
4

Woche 4

4 Stunden zum Abschließen

Other Applications of Reinforcement Learning: P-2-P Lending, Cryptocurrency, etc.

4 Stunden zum Abschließen
9 Videos (Gesamt 79 min)
9 Videos
Electronic Markets and LOB9m
Trades, Quotes and Order Flow7m
Limit Order Book8m
LOB Modeling8m
LOB Statistical Modeling10m
LOB Modeling with ML and RL9m
Other Applications of RL7m
The Value of Universatility15m

Bewertungen

Top-Bewertungen von OVERVIEW OF ADVANCED METHODS OF REINFORCEMENT LEARNING IN FINANCE

Alle Bewertungen anzeigen

Über den Spezialisierung Machine Learning and Reinforcement Learning in Finance

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3) successfully implementing a solution, and assessing its performance. The specialization is designed for three categories of students: · Practitioners working at financial institutions such as banks, asset management firms or hedge funds · Individuals interested in applications of ML for personal day trading · Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance. The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance....
Machine Learning and Reinforcement Learning in Finance

Häufig gestellte Fragen

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

  • Wenn Sie ein Abonnement abgeschlossen haben, erhalten Sie eine 7-tägige, kostenlose Testversion, die Sie gebührenfrei wieder kündigen können. Danach gewähren wir keine Rückerstattungen mehr, aber Sie können Ihr Abonnement jederzeit kündigen. Lesen Sie unsere vollständige Rückerstattungsrichtlinie.

  • Ja, Coursera bietet für Kursteilnehmer, die sich die Kursgebühr nicht leisten können, finanzielle Unterstützung an. Bewerben Sie sich dafür, indem Sie auf den Link für finanzielle Unterstützung links unter der Schaltfläche „Anmelden“ klicken. Sie werden zum Ausfüllen eines Antrags aufgefordert und werden bei Genehmigung benachrichtigt. Diesen Schritt müssen Sie für jeden Kurs der Spezialisierung ausführen, auch für das Abschlussprojekt. Mehr erfahren

  • Für diesen Kurs gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Kurszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren. Online-Abschlüsse und Mastertrack™-Zertifikate auf Coursera bieten die Möglichkeit, akademische Leistungspunkte zu erwerben.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..