AI is transforming the practice of medicine. It’s helping doctors diagnose patients more accurately, make predictions about patients’ future health, and recommend better treatments. This Specialization will give you practical experience in applying machine learning to concrete problems in medicine.
Dieser Kurs ist Teil der Spezialisierung Spezialisierung KI für Medizin
von


Über diesen Kurs
We recommend first completing Course 1 and 2 of the AI For Medicine Specialization.
Was Sie lernen werden
Estimate treatment effects using data from randomized control trials
Explore methods to interpret diagnostic and prognostic models
Apply natural language processing to extract information from unstructured medical data
Kompetenzen, die Sie erwerben
- treatment effect estimation
- machine learning interpretation
- Random Forest
- natural language entity extraction
- question-answering
We recommend first completing Course 1 and 2 of the AI For Medicine Specialization.
Lehrplan - Was Sie in diesem Kurs lernen werden
Treatment Effect Estimation
Medical Question Answering
ML Interpretation
Bewertungen
- 5 stars77,61 %
- 4 stars15,81 %
- 3 stars4,10 %
- 2 stars1,43 %
- 1 star1,02 %
Top-Bewertungen von AI FOR MEDICAL TREATMENT
Learned a lot about interpretations of both machine learning and deep learning models. Introduction to basic NLP techniques was a great start too. The overall course is really good.
Extremely valuable course, you get introduced to a lot of (mostly) ready-to-use tools. This is applicable for a lot of other industries as well!
This is a valuable course, encompassing several branches of applied AI in medicine. It worths the effort to take it!
Building a treatment model and evaluation, take this course to fully understand what to consider. A practical Model for Mediacl Treament
Über den Spezialisierung KI für Medizin

Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich diese Spezialisierung abonniere?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.