Chevron Left
Zurück zu Apply Generative Adversarial Networks (GANs)

Bewertung und Feedback des Lernenden für Apply Generative Adversarial Networks (GANs) von deeplearning.ai

4.8
Sterne
453 Bewertungen

Über den Kurs

In this course, you will: - Explore the applications of GANs and examine them wrt data augmentation, privacy, and anonymity - Leverage the image-to-image translation framework and identify applications to modalities beyond images - Implement Pix2Pix, a paired image-to-image translation GAN, to adapt satellite images into map routes (and vice versa) - Compare paired image-to-image translation to unpaired image-to-image translation and identify how their key difference necessitates different GAN architectures - Implement CycleGAN, an unpaired image-to-image translation model, to adapt horses to zebras (and vice versa) with two GANs in one The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research....

Top-Bewertungen

UD

5. Dez. 2020

I really liked the exposure to preparing various loss functions in paired and non-paired GANs, introduction to other applications, and many great changes to improve the quality of the networks!

MM

23. Jan. 2021

GANs are awesome, solving many real-world problems. Especially unsupervised things are cool. Instructors are great and to the point regarding theoretical and practical aspects. Thankyou!

Filtern nach:

1 - 25 von 92 Bewertungen für Apply Generative Adversarial Networks (GANs)

von Akit M

15. Nov. 2020

von Dylan T

30. Nov. 2020

von Iván G

11. Nov. 2020

von Nikita K

4. Apr. 2021

von Behnaz B

31. Dez. 2020

von Quincy Q

1. Nov. 2020

von Mahdi E

10. Nov. 2020

von Ulugbek D

5. Dez. 2020

von Akhtar M

24. Jan. 2021

von Dmitry F

24. Nov. 2020

von Yifan J

18. Jan. 2021

von Aladdin P

21. Nov. 2020

von Kyle M P O

3. Jan. 2021

von Amit J

29. Jan. 2021

von Brian G

31. Jan. 2021

von Rajendra A

11. Aug. 2021

von Pablo C E

9. Apr. 2021

von Vinayak N

16. Nov. 2020

von Mikhail G

11. Nov. 2020

von Mark L

8. Dez. 2020

von Mark T

19. Jan. 2022

von Jong H S

16. März 2022

von GERMÁN G J

28. Okt. 2020

von Pang C H J

26. Sep. 2021