Zurück zu Bayessche Statistik

Sterne

767 Bewertungen

•

248 Bewertungen

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction.
We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

RR

20. Sep. 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH

9. Apr. 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Filtern nach:

von Niels R

•6. Juli 2019

This course through the material too fast. The content should have been spread out over two courses in my opinion.

von Emmanouil K

•16. Aug. 2017

This is a very interesting topic. Lectures in weeks 3 and 4 could use some work.

von Vicken A

•28. Dez. 2016

Bayesian stats is a broad topic. Learners would benefit from more material.

von Raja F Z

•23. Mai 2020

this Course very informative and bears an applied approach for learning.

von Jaime R

•8. Nov. 2018

Theorethical backdrop is a bit excessive on an R focused course

von Elham L

•25. Aug. 2020

The material was interesting, yet required more time.

von Liew H P

•16. Jan. 2019

This course is challenging and well-presented!

von José M C

•22. März 2017

Good content but sometimes it gets confusing.

von 陈昊

•14. Nov. 2017

Harder than former courses but great!

von George G

•6. Mai 2017

The classes are good.

von sohini m

•27. Okt. 2017

It was nice

von Tanika M

•8. Sep. 2020

I don't have much new to add here - like many others, I found the course to be a sharp departure in teaching style and workload from the previous 3 courses, and found unanswered threads on the forums from one and two years ago. Students have been leaving feedback in this vein for years as well but it does not seem to have prompted any adjustments. The last two weeks of reading are especially intense and feel very crammed in, with the videos not explaining it with the care that the first few courses do.With all that said, it is not impossible to get through this course (clearly, as many of us have finished it), but you're left on your own for much of it. On the bright side the course project is not a huge jump up in difficulty as the readings may suggest, but is pretty much in line in terms of difficulty compared to the previous three projects.

von Haixu L

•19. Jan. 2018

The material is interesting. However some of the points are not presented in a way that I can understand.

The course is less coherent than the previous ones.

This course gave me an impression that the materials are not well organized. Basically, the course organizers present a lot of concepts and materials to you without background introductions. I know there are a lot to cover in 5 weeks. The organizers should think this through about how to present a lot of information in a short period of time. Maybe put the less important information in a lecture notes or something could be better.

von Sander t C

•22. Juni 2020

This course was way harder than the three that came before. It feels as if courses 1 to 3 did not prepare me for this one at all. The lecturers throw in a lot of formulas that they just expect us to understand with ease. Whereas the first three courses explained everything in great detail, even the simplest things, this course assumes you immediately understand everything they throw at you. The quizzes also ask for small details mentioned during 2 seconds of one of the many videos. Still, the course is doable if you push through and apply what you learn in the Rstudio-assignments.

von Sandro H

•29. Nov. 2020

I wanted to rate this 3.5 but because I could not will lean towards 3 stars. The main reasons being that the course could have been organized in such as way as to introduce Bayesian statistics, rather than bombard the student with hefty math formulas. Instead, it could have reduced the material by half and focused on understanding WHY and WHEN Bayesian can be helpful for certain cases. An emphasis on providing more practical examples could have helped me more clearly understand the mechanisms of priors, model averaging, etc.

von Jeff M

•9. Mai 2019

Overall I think there are better options available for learning bayesian statistics. The pacing and structure of the course both felt off to me, spending too much time on some things (conjugacy in particular) and breezing past many other things too quickly (particularly numerical methods). I also thought that it would have been more helpful to learn to perform many of the analyses from scratch so that they could be better understood, rather than relying so heavily on the accompanying statsR package.

von schlies

•31. Mai 2019

It seems like this course contains good information, but there's a huge gap in the material as taught by some of the instructors. It seems like one of the instructors in particular assumes you're already familiar with material that's not covered in the rest of the course. These parts of the lectures rehearse math and code in a very formulaic way which conveys almost no intuition or understanding of the subject matter. However, the labs a pretty good.

von Bo L

•8. Dez. 2017

This course is different from the first 3 courses in this specialization. I only recommend this course to people who have sound knowledge in calculus and some background knowledge in Bayesian Statistics. Personally, the pace of the videos is fast and the instructors use very technical terms. Although the course is not intended to give in-depth explanation into Baysian statistics, how the content is set up tend to be confusing.

von amoulay

•23. Juli 2021

This was course #4 of the series. The previous 3 courses were fun. Not so for Bayesian stat. While working out the quizzes and project were at reach, the concept behind several aspects of bayesian remain obscure, at least for me. Instructors are wonderful, they know their stuff, but something was missing as to delivering bayesian stat. Not their fault: bayesian looks like it's a hard core topic to understand and master.

von Thomas J H

•6. Aug. 2017

This course has a much steeper learning curve than the first three, and goes from theory to examples in action rather than vice versa. I think the Professors involved are super-smart and more than just qualified, but the teaching method is a noted departure from the first three courses in this series. Think this would work better as two courses. Slow things down a bit, and give more R exercises and examples.

von Andreas Z

•27. März 2018

This introduction to Bayesian statistics familiarises you with the fundamental concepts. The difficulty is that the material covered is non-trivial and probably cannot be squeezed into the time allocated. Is is very difficult to follow the lectures and not getting lost. Thus, you need to take lot of time and maybe complement this course additional ones in order to understand the material and profit from it.

von Etienne T

•20. Nov. 2017

This course delved too deep in the math that were not always explained as good as the other courses in this specialization. Really liked the prof from the other courses (Mine), she really explained well... Didn't like the teaching style of the prof in this course unfortunately. Didn't have a good reference book that we could refer to like the other courses. This was really a pain.

von Benjamin E

•12. Juli 2020

Interesting concepts and some good expositions of subject matter. However, too much of the course is confusing, and there is little attempt to explain intuition behind concepts. In particular, various options for Bayesian regression modelling are introduced, but there is no material about how to decide which tools to use when.

von Erik B

•26. Feb. 2017

After 3 great courses in this specialization, this one was disappointing. The content just isn't explained well in the videos. The Labs were fine. I'm sorry but the course seemed rushed, and it isn't great marketing for the Bayesian approach. As a consequence, I am now not sure if I want to do the capstone......

von Elvis S R

•10. Sep. 2019

I don't think the level of this course is in continuity with the previous three of the specialization. The first average of the classes are as usual, but then the topics become harder and equation-oriented. Less examples are developed and I wasn't able to learn everything as it happened in the previous courses.

- Google Data Analyst
- Google-Projektmanagement
- Google-UX-Design
- Google IT-Support
- IBM Datenverarbeitung
- IBM Data Analyst
- IBM-Datenanalyse mit Excel und R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack-Cloudentwickler
- Facebook Social Media Marketing
- Facebook Marketinganalyse
- Salesforce Sales Development Representative
- Sales Operations in Salesforce
- Buchhaltung mit Intuit
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Architect
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Data Engineer
- Eine Karriere starten
- Auf eine Zertifizierung vorbereiten
- Bringen Sie Ihre Karriere voran

- Kostenlose Kurse
- Lernen Sie eine Sprache
- Python
- Java
- Webdesign
- SQL
- Gratiskurse
- Microsoft Excel
- Projektmanagement
- Cybersicherheit
- Personalwesen
- Kostenlose Kurse in Datenverarbeitung
- Englisch sprechen
- Inhalte verfassen
- Full-Stack-Webentwicklung
- Künstliche Intelligenz
- C-Programmierung
- Kommunikationsfähigkeiten
- Blockchain
- Alle Kurse anzeigen

- Kompetenzen für Datenwissenschaftsteams
- Datengestützte Entscheidungsfindung
- Kompetenzen im Bereich Software Engineering
- Soft Skills für Ingenieurteams
- Management-Kompetenzen
- Marketing-Kompetenzen
- Kompetenzen für Vertriebsteams
- Produktmanager-Kompetenzen
- Kompetenzen im Bereich Finanzen
- Beliebte Kurse in Datenverarbeitung im Vereinigten Königreich
- Beliebte Technologiekurse in Deutschland
- Beliebte Zertifizierungen für Cybersicherheit
- Beliebte IT-Zertifizierungen
- Beliebte SQL-Zertifizierungen
- Karriereleitfaden für Marketing-Manager
- Karriereleitfaden für Projektmanager
- Python-Programmierkenntnisse
- Karriereleitfaden für Webentwickler
- Datenanalysefähigkeiten
- Kompetenzen für UX-Designer

- MasterTrack® Certificates
- Zertifikate über berufliche Qualifikation
- Universitätszertifikate
- MBA- und Business-Abschlüsse
- Abschlüsse in Data Science
- Abschlüsse in Informatik
- Abschlüsse in Datenanalyse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Sozialwissenschaften
- Management-Abschlüsse
- Abschlüsse von europäischen Spitzenuniversitäten
- Masterabschlüsse
- Bachelorabschlüsse
- Studiengänge mit Performance Pathway
- BSc-Kurse
- Was ist ein Bachelorabschluss?
- Wie lange dauert ein Masterstudium?
- Lohnt sich ein Online-MBA?
- 7 Finanzierungsmöglichkeiten für die Graduate School
- Alle Zertifikate anzeigen