Zurück zu Bayessche Statistik

3.9

Sterne

694 Bewertungen

•

219 Bewertungen

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction.
We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

Sep 21, 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

Apr 10, 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Filtern nach:

von dumessi

•Sep 08, 2019

The explaining for some bayesian methods are unclear, which make it harder for new learner to follow.

von Robert M M

•Sep 27, 2017

Slides poor compared to 3 earlier modules and instructor not as engaging. However, the labs are good.

von Stefan H

•Mar 16, 2019

Find it hard to follow the lectures. The labs and supplement material is good though.

von Kalle K

•Jun 16, 2020

A useful course, but very demanding. Many of the lectures are fast-paced.

von Gustavo S B

•Sep 17, 2017

I would recommend to include more weeks; slow down and go deeper

von Li Z

•Aug 15, 2019

Some contents are just too difficult to understand fully.

von Christopher C

•Feb 12, 2018

Very heavy information very quickly otherwise - great

von Yang X

•Dec 04, 2016

Good course, but need more details.

von Xinyi L

•Aug 15, 2017

not very interested

von Kshitij T

•Jan 04, 2018

tough course.

von Vivian Y Q

•Oct 13, 2017

huge jump

von Zhao L

•Aug 04, 2016

This course covers a good amount of bayesian statistics. However, the presentation/videos starting from week 2 really sucks. They change instructors for difference topics and obviously some instructors are not very good at explaining other than reading the material.

The videos skipped many medium steps that are actually very crucial for understanding the concepts. And no suggested reading materials at all either. Also the quiz are not very well designed either. For example, some quiz are much more simpler than the course material, which makes it not helpful at all to understand the course material itself. While some times it is the opposite.

The first three courses in this specialization are very good, but somehow this course are way below the quality of the previous ones.

von Witold W

•Sep 26, 2017

Tons of interesting material. However, presented in a way which is hard to take, and harder to remember, especially if you are used to the exceptionally high standards of Coursera. The slides, which I am used to work with, are a big let down. They are hard to follow, erratic, lack thoroughness and are incomplete. It does not make it better that they refer you all the time to additional material. Also the lectures are disappointing. The lecturers do not interact with the slides, they don't explain. I wished I could have taken more from the course since I think that the topic is relevant and interesting. Really disappointed. I do hope that there will more MOOC's teaching Bayesian statistics soon.

von Jorge A S

•Jun 10, 2018

The previous courses of the specialization were much better. This one is too fast paced and confusing. The math for this course is significantly harder than for the previous, but in my case it was not the math what was making it hard. The videos are hard to follow. I answered some of the quiz questions based on intuition and what looked reasonable rather than actually knowing how to solve them. Usually in the previous courses the project felt like the hardest part, but on this one the project felt like the easiest. What I did like about the course is that it has good breadth of topics in Bayesian statistics.

von Natalie R

•Sep 05, 2019

This course, compared to the others in the specialization, was a bit of a mess. The lectures were hard to follow with fewer exercises to check your learning than in previous courses. The "text" seemed to just be a bad transcript of the lectures with all sorts of errors. The labs were confusing and sometimes included incorrect or outdated instructions that caused me to waste a lot of extra time trying to figure out what was wrong. I enjoyed doing the final project, though, and learned a lot doing that.

von Adara

•Dec 04, 2017

The course presents interesting material but it is not easy to follow. It is a huge jump from the previous courses and requires far more hours to understand all the (math-heavy) material than the stated. The slides feel a bit chaotic and the language/sentences during the explanations could be much simpler. At times it feels that the instructors limit themselves to reading formulas one after another, making it hard to find a connection between them and how they are applied.

von Duane S

•Apr 15, 2017

This course makes a valiant effort to provide as much coverage of Bayesian statistical methods as the prior three courses in the "Statistics in R" specialization do for Frequentist statistical methods, but the lack of supporting material (e.g. reading/text exercises directly paired with each lesson) really hampers this. The videos are quite informative, but if you don't catch on to the material based strictly on the videos, the weekly quizzes can be a bit frustrating.

von Sarthak R

•Dec 04, 2019

This course is far different from others in the series. Mathematical formulas and other concepts are introduced without any prior background. Even if the concept is understood the application part of it still remains a mystery on where to apply it, the course could have been more elaborate explaining these concepts in-depth rather than introducing without any prior background. Words such as prior families are used without introducing them properly.

von Matthew A H

•Aug 26, 2019

Disappointing drop in quality compared to previous courses in the specialisation. Lectures are just a verbatim copy of the accompanying book, with no additional context, and course assignments/quizzes expect you to know material not covered in the course (e.g. while working on a quiz, I would go back to the textbook, CTRL+F on key terms from the quiz questions, only for them not to be anywhere in the course material).

von Gustavo L

•Apr 26, 2020

This course was by far the hardest one of the series and I felt lost numerous times. The video lectures are brief and in my opinion bring more questions than answers. I am not sure about other students but I feel that this course needed 1- much more R-exercises. 2- many more examples per lecture for example, it could be better explored the lessons learned with multiple question quizzes.

von Kateryna M

•Jul 15, 2017

I think that some of the lectures in this unit are not constructed as well and clear as in previous units. This makes it harder to learn. I needed way more time than it is specified in the course to process and understand the course material. However, in the previous units I did not experience such issues

von Lucie L

•Aug 16, 2016

This course clearly has come ambition to cover important topics on bayesian statistics, however, probably due to time limit, the lecturers have to skim through the contents without further, sometimes necessary explanations. As a result, the lectures are difficult to follow.

von Xiaoping L

•Nov 02, 2016

The professors know what they are doing but not good at making the concepts plain to the students who don't have the strong background. Most of the times I would just ask myself why they did this and that but later they don't provide enough explanations.

von Omar S

•Mar 27, 2020

The instructors are not interactive at all, they are reading directly, it's very boring specially for first week, the instructor overlook most important issues and doesn't highlight them, however the reading material is useful.

von David O P

•May 13, 2017

Although the course is high quality, unless the other units, this one is way too difficult. The fact that it wasn't Mine who performed the whole course impacts significantly

- KI für alle
- Vorstellung von TensorFlow
- Neuronale Netzwerke und Deep Learning
- Algorithmen, Teil 1
- Algorithmen, Teil 2
- Maschinelles Lernen
- Maschinelles Lernen mit Python
- Maschinelles Lernen mittels Sas Viya
- R-Programmierung
- Einführung in die Programmierung mit Matlab
- Datenanalyse mit Python
- AWS-Grundlagen: Mit der Cloud vertraut werden
- Grundlagen der Google Cloud-Plattform
- Engineering für Site-Funktionssicherheit
- Englisch im Berufsleben
- Die Wissenschaft des Wohlbefindens
- Lernen lernen
- Finanzmärkte
- Hypothesenüberprüfung im öffentlichen Gesundheitswesen
- Grundlagen für Führungsstärke im Alltag

- Deep Learning
- Python für alle
- Data Science
- Angewandte Datenwissenschaft mit Python
- Geschäftsgründungen
- Architektur mit der Google Cloud-Plattform
- Datenengineering in der Google Cloud-Plattform
- Von Excel bis MySQL
- Erweiterte maschinelles Lernen
- Mathematik für maschinelles Lernen
- Selbstfahrende Autos
- Blockchain-Revolution für das Unternehmen
- Unternehmensanalytik
- Excel-Kenntnisse für Beruf
- Digitales Marketing
- Statistische Analyse mit R im öffentlichen Gesundheitswesen
- Grundlagen der Immunologie
- Anatomie
- Innovationsmanagement und Design Thinking
- Grundlagen positiver Psychologie