In most cases, the ultimate goal of a machine learning project is to produce a model. Models make decisions, predictions—anything that can help the business understand itself, its customers, and its environment better than a human could. Models are constructed using algorithms, and in the world of machine learning, there are many different algorithms to choose from. You need to know how to select the best algorithm for a given job, and how to use that algorithm to produce a working model that provides value to the business.
Dieser Kurs ist Teil der Spezialisierung CertNexus-zertifizierter Artificial Intelligence Practitioner Zertifikat über berufliche Qualifikation
von

Über diesen Kurs
ML workflow knowledge is required, as is experience with Python or similar languages. Basic knowledge of math and statistics is also recommended.
Was Sie lernen werden
Train and evaluate linear regression models.
Train binary and multi-class classification models.
Evaluate and tune classification models to improve their performance.
Train and evaluate clustering models to find useful patterns in unsupervised data.
Kompetenzen, die Sie erwerben
- Machine Learning
- clustering
- classification
- Linear Regression
- Machine Learning (ML) Algorithms
ML workflow knowledge is required, as is experience with Python or similar languages. Basic knowledge of math and statistics is also recommended.
von
Lehrplan - Was Sie in diesem Kurs lernen werden
Build Linear Regression Models Using Linear Algebra
Build Regularized and Iterative Linear Regression Models
Train Classification Models
Evaluate and Tune Classification Models
Über den CertNexus-zertifizierter Artificial Intelligence Practitioner Zertifikat über berufliche Qualifikation

Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich dieses Zertifikat abonniere?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.