Über diesen Kurs
4.4
47 Bewertungen
7 Bewertungen

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 13 Stunden zum Abschließen

Empfohlen: 4-6 hours/week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 13 Stunden zum Abschließen

Empfohlen: 4-6 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
6 Stunden zum Abschließen

Course Overview & Module 1 Analytics Beyond the Spreadsheet

This first module exposes and explains key data and analytics concepts from Big Data to data warehousing to natural language query, and everything in-between. Next we will explore various analytic techniques, types of visualizations, and types of analytics solutions. The course will continue with identifying and learning about key data and analytics roles and organization structures, including chief data and analytics officers, data scientists, and analytics centers of excellence. Alternatives to direct hiring, such as outsourcing and crowdsourcing, will also be covered. Finally, the course will scrutinize analytic trends and futures. ...
17 Videos (Gesamt 97 min), 7 Lektüren, 2 Quiz
17 Videos
Meet Instructor Doug Laney1m
Lesson 1-1 Overview of Analytics5m
Lesson 1-2 Beyond Basic Business Intelligence6m
Lesson 1-3-1 The Analytics Continuum7m
Lesson 1-3-2 Analytic OutpuT6m
Lecture 1-3-3 Basic Analytic Techniques2m
Lecture 1-4 Analytic Graphical Representation (Visualization)11m
Interview with Kevin Hartman14m
Lecture 1-5-1 Key Analytics Concepts to Know (Data Literacy)32
Lecture 1-5-2 Data, What Data? (Sources of Data)5m
Lecture 1-5-3 Where to Put the Data and How to Get it There?8m
Lecture 1-5-4 Analytic Methods, Techniques and Concepts6m
Lecture 1-5-5 Other Data Concepts4m
Lecture 1-6-1 Purpose-Built Analytic Solutions17
Lecture 1-6-2 Data-specific Analytic Solutions4m
Lecture 1-6-3 Business Function-Specific Analytics8m
7 Lektüren
Syllabus20m
About the Discussion Forums10m
Glossary20m
Brand Descriptions20m
Update Your Profile10m
Module 1 Overview20m
Module 1 Readings
2 praktische Übungen
Orientation Quiz10m
Module 1 Graded Quiz30m
Woche
2
3 Stunden zum Abschließen

Module 2 Industry and Business Function Analytics

Over the course of the module, you will also see how data and analytics in each of these organizations can be used in similar ways, in similar business functions. Accordingly, you will appreciate that to be truly data-driven, you need not only look to examples in your own industry, but, also learn and apply analytics concepts from organizations in other fields....
11 Videos (Gesamt 66 min), 2 Lektüren, 1 Quiz
11 Videos
Lecture 2-1 Banking and Financial Institution Examples6m
Lecture 2-2 Insurance Examples3m
Lecture 2-3 Retail Examples7m
Lecture 2-4 Manufacturing, Consumer Package Goods Examples5m
Lecture 2-5 Energy Sector Examples7m
Lecture 2-6 Telecommunications Examples3m
Lecture 2-7 Government and the Public Sector Examples10m
Lecture 2-8 Healthcare Examples6m
Lecture 2-9 Sports and Entertainment Examples4m
Lecture 2-10 Other Examples7m
2 Lektüren
Module 2 Overview20m
Module 2 Readings30m
1 praktische Übung
Module 2 Graded Quiz30m
Woche
3
5 Stunden zum Abschließen

Module 3 Staffing and Organizing for Analytics

In this module you will learn a bunch of crucial analytical roles and the emergence of new roles in organizations from the C-suite down to various analyst roles. You will take a brief look at the job descriptions and the responsibilities. You will also put yourself in either a job seeker’s or a recruiter’s shoes to see what kind of skill sets are the most important and which position fits you the best. For example, it will introduce you to the three core skills of the data scientist and the crucial soft skills required to be a successful data scientist. ...
11 Videos (Gesamt 74 min), 2 Lektüren, 2 Quiz
11 Videos
Lecture 3-1 The Chief Information Officer (CIO)3m
Lecture 3-2 The Chief Data Officer (CDO)7m
Lecture 3-3 Chief Digital Officer2m
Lecture 3-4 The Chief Analytics Officer (CAO)3m
Lecture 3-5 The Data Scientist8m
Lecture 3-6 Data Scientist Soft Skills4m
Lecture 3-7 Other Analytics Related Roles9m
Lecture 3-8 The Analytics Center of Excellence4m
Lecture 3-9 Analytics Consulting and Crowdsourcing5m
Interview with Graham Waller23m
2 Lektüren
Module 3 Overview20m
Module 3 Readings
1 praktische Übung
Module 3 Graded Quiz30m
Woche
4
3 Stunden zum Abschließen

Module 4 Analytics Success Today and Tomorrow

This module explores telling stories, through data, that connect emotionally with your audience. It will also review examples and figures that make the concept easy to understand. You will learn the major do’s and don’ts of creating dataviz and rules that lead to the clear depiction of your findings. This unit specifically focuses on Dona Wong’s guidelines for good data visualization and charts. The last leg of Module 4 teaches the three tests that help you improve your visualization. In the final step of dataviz execution, you will learn the McCandless Method for presenting visualizations. This five-step process produces the most effective communication of the graphics to your audience....
14 Videos (Gesamt 53 min), 2 Lektüren, 1 Quiz
14 Videos
Lecture 4-1-2 Analytics Maturity Levels3m
Lecture 4-1-3 Key Maturity Disciplines3m
Lecture 4-2 Analytics Success Factors11m
Lecture 4-3-0 Analytics Trends and Futures41
Lecture 4-3-1 Analytics as a Corporate Strategy2m
Lecture 4-3-2 Data Literacy3m
Lecture 4-3-3 Valuing Information Assets4m
Lecture 4-3-4 A Data Science and AI Ethical Code of Conduct4m
Lecture 4-3-5 Continuous Intelligence2m
Lecture 4-3-6 Reinventing, Digitalizing and Eliminating Business Offerings2m
Lecture 4-3-7 AI will Struggle to Scale in the Organization3m
Lecture 4-3-8 Most Analytic Insights Will Fail to Deliver Business Value3m
Lecture 4-3-9 Quantum Computing Will Start to Outperform Traditional Analytics Computing4m
2 Lektüren
Module 4 Overview20m
Module 4 Readings
1 praktische Übung
Module 4 Graded Quiz30m
4.4
7 BewertungenChevron Right

Top-Bewertungen

von JKMay 2nd 2019

Great introduction course for Business Analytics for any level of experienced professionals or students.

Dozent

Avatar

Douglas B. Laney

Visiting Professor and Gartner VP & Distinguished Analyst
Accountancy and Business Administration

Beginnen Sie damit, auf Ihren Master-Abschluss hinzuarbeiten.

This Kurs is part of the 100% online Master of Business Administration (iMBA) from University of Illinois at Urbana-Champaign. If you are admitted to the full program, your courses count towards your degree learning.

Über University of Illinois at Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..