This course will introduce the concepts of interpretability and explainability in machine learning applications. The learner will understand the difference between global, local, model-agnostic and model-specific explanations. State-of-the-art explainability methods such as Permutation Feature Importance (PFI), Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanation (SHAP) are explained and applied in time-series classification. Subsequently, model-specific explanations such as Class-Activation Mapping (CAM) and Gradient-Weighted CAM are explained and implemented. The learners will understand axiomatic attributions and why they are important. Finally, attention mechanisms are going to be incorporated after Recurrent Layers and the attention weights will be visualised to produce local explanations of the model.
Dieser Kurs ist Teil der Spezialisierung Spezialisierung Informed Clinical Decision Making using Deep Learning
von


Über diesen Kurs
Python programming and experience with basic packages such as numpy, scipy and matplotlib
Was Sie lernen werden
Program global explainability methods in time-series classification
Program local explainability methods for deep learning such as CAM and GRAD-CAM
Understand axiomatic attributions for deep learning networks
Incorporate attention in Recurrent Neural Networks and visualise the attention weights
Kompetenzen, die Sie erwerben
- attention mechanisms
- explainable machine learning models
- model-agnostic and model specific models
- global and local explanations
- interpretability vs explainability
Python programming and experience with basic packages such as numpy, scipy and matplotlib
Lehrplan - Was Sie in diesem Kurs lernen werden
Interpretable vs Explainable Machine Learning Models in Healthcare
Local Explainability Methods for Deep Learning Models
Gradient-weighted Class Activation Mapping and Integrated Gradients
Attention mechanisms in Deep Learning
Über den Spezialisierung Informed Clinical Decision Making using Deep Learning

Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich diese Spezialisierung abonniere?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.