Zurück zu Convolutional Neural Networks in TensorFlow

Sterne

7,339 Bewertungen

•

1,140 Bewertungen

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning.
In Course 2 of the deeplearning.ai TensorFlow Specialization, you will learn advanced techniques to improve the computer vision model you built in Course 1. You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models.
The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization....

MS

12. Nov. 2020

A really good course that builds up the knowledge over the concepts covered in Course 1. All the ideas are applicable in real world scenario and this is what makes the course that much more valuable!

RB

14. März 2020

Nice experience taking this course. Precise and to the point introduction of topics and a really nice head start into practical aspects of Computer Vision and using the amazing tensorflow framework..

Filtern nach:

von Nick A

•8. Mai 2019

This course significantly lacks depth. The topic is covered at a very high-level and represents only a lightweight introduction. You will not gain any insights into the challenges that someone might face using CNNs on Tensorflow in a real-world scenario.

This course does not compare to the kind of insights that you learn from the other courses taught by Andrew Ng.

There are no graded programming assignments to validate what you have learned. The exercises that are provided are very simplistic.

von Имангулов А Б

•3. Juli 2019

You may look at it as a set of use-cases on how to work with particular types of .ipynb notebooks or how to structure your code, but, unfortunately, lectures are useless and tasks are mechanical rather than challenging.

Huge disappointment.

von Irina G

•2. Aug. 2019

I think I knew more about CNN before this course.

von Asad K

•4. Juli 2019

This is the second course of the specialization and still I feel like I haven't been introduced to anything beyond the free tutorials available on tensorflow website. So far the specialization has also been only focused on the keras api of tensorflow which makes me feel that perhaps the name of this specialization has been poorly chosen (perhaps it should be 'Keras in Practice Specialization'). On the positive side, the instructor is eloquent and the learning material is presented in a well and orderly fashion (ignoring some minor cases of redundancy in notebooks; basically copy pasting the whole notebook several times just to introduce a few lines of new code).

von Jbene M

•30. Juli 2019

This is pretty simple. This doesn't give an idea of the real use of keras. also there is no programming assignments.

von Dan G

•21. Apr. 2020

This course is extremely disappointing. The content is very shallow, you'll get more from just following the keras tutorials in the official tensorflow docs. Also, since this specialisation only seems to cover the keras api, perhaps the title is a bit misleading.

On the plus side - it is pretty easy to complete the whole thing in a day and very easy to knock it out before the free trial ends. But honestly, even for free, I don't think it is worthwhile.

The material is very presented in small repetitive chunks, where you'l basically just be running the same notebooks over and over with one small new function thrown each each "week". The quizzes and assignments are riddled with typos which I think is a poor show for a paid for course.

The assignments are basically just copies of the coursework notebooks. No thinking required.

I really would not recommend this specialisation. Your time will be better spent elsewhere. It is such a pity as the previous courses by Andrew Ng have been of such high quality.

von Walter H L P

•6. Aug. 2019

This course is so short in content that, in the whole last week, it is explained a trivial concept about multi-class classification. Besides, the last quiz recycle questions from the previous quizzes from this and the previous course. It is clear that the course was made in a hurry once the notebook examples lack in written content or figures explaining the subject. Finally, there is no practical assignments in this "Tensorflow in practice" course.

von Xiaotian Z

•25. Nov. 2020

This series of courses is just a 'Hello World' introduction of Tensorflow/Keras. The instructor just touches the surface of some code from the Tensorflow document without explaining some really fundamental concepts (e.g. tensors). The videos are usually 1-2 min long, really a headache to watch. The quiz is too simple and poorly designed-- instead of thinking or calculating you just need to remember some basic concepts/grammar rules. Programming exercises are not really useful and there is too much duplicate work. Not worth the money if you plan to pay for it-- auditing is enough. I am disappointed by deeplearning.ai for producing such a shallow course.

von Romilly C

•15. Mai 2019

Excellent material superbly presented by world-class experts.

Sorry if this sounds sycophantic, but this series contains some of the best courses I've encountered in50+ years of learning.

von James V

•28. Aug. 2019

I finally feel confident that I understand the basics of Convolutional neural nets and what function the various layers serve. It took a Polymath computer engineer/science fiction writer to finally break that mental block and get through to me. Take this class you won't regret it.

von Muhammad H

•24. Mai 2019

A very comprehensive and easy to learn course on Tensor Flow. I am really impressed by the Instructor ability to teach difficult concept with ease. I will look forward another course of this series.

von Eslam G

•19. Juli 2019

this course is very useful for beginners

von Ostap O

•27. Juni 2019

It is a great intro but a very limited course. Short videos and a small number of examples, for example, Transfer learning could be more in-depth. Week 4 really made a few obvious changes in the code. I do think it's great material, but all of it could be made into a 2-week course instead. Thanks for your efforts.

von Parab N S

•14. Sep. 2019

An excellent course by Laurence Moroney on explaining how ConvNets are prepared using Tensorflow. A really good strategy to have the programming exercises on Google Colab to speed up the processing.

von Heman K

•3. Mai 2019

I enjoyed doing this course on CNN in Tensorflow. Thanks for the lectures by Laurence Moroney. And it is always a pleasure to hear Andrew Ng explain even difficult concepts in simple terms. He is one of my favorite teachers online, and reading about his ML course in a New York Times article back in 2012 or 2013 made me completely change my career direction and motivated me to eventually get into cloud and Big Data! And thanks also for the exercises on codelab. That makes it really convenient to learn and experiment with Machine Learning and Deep Learning.

I did take the first course in the Deep Learning Specialization early last year, but didn't get a chance to do this until now. Looking forward to completing the remaining three courses sometime this year.

von Iacopo C

•11. Aug. 2020

This course follows up with two very important concepts that are left out in the first course of the series.

While the workload is definitely not heavy, the quality is high and the explanations are top-notch.

This whole specialization focuses on practice, it helps you understand little by little the building blocks to create a model. If you want a theoretical explanation sign up for the Deep Learning Specialization (as suggested by the instructor itself).

This specialization should be seen as complementary to the other, expecting to find the same concepts explained over and over again wouldn't make any sense and it would only be redundant.

von Mo R

•27. Mai 2019

It's an amazing course, the video lectures are fruitful and the contents of the courses are well designed, the instructor is talented and his explanations are extremely helpful, it's one of the best courses taught on Tensorflow!

von Oleg K

•7. Aug. 2020

Last assignment could have been explained better. Laurence does not talk about ImageDataProcessing.flow, despite this is the only solution

von Abhinand

•28. Jan. 2022

The course initially revisits basic concepts of convolutions, model compilation and building. The concepts that are built on this include image augmentation, transfer learning with Inception net and multi class classification proficiently cover practical implementaiton using TensorFlow

von Tharindu B A

•16. Juni 2019

Well balanced short and sweet course with practical programming exercises as well as solid theoretical background superbly presented by outstanding tech experts. Looking forward eager for next courses of this series. Thank you very much!

von George J C

•23. Aug. 2019

Very informative and the lessons are extremely very well distilled! I came into this course feeling I understood Convolutional Networks and feel as though taking this course and complimentary quizzes provided value to my knowledge base.

von Charlie M

•1. Mai 2019

A patient and coherent introduction. At the end, you have good working code you can use elsewhere. Remarkably, the primary lecturer, Laurence Moroney, responds fairly quickly to posts in the forum.

von SANDANAKISHNAN S

•9. Dez. 2019

Very clear explanation on the concepts at the higher level and practical application of it is discussed, demonstrated and also the exercises are of the same way. You will just love learning this way

von Subhadeep D

•20. Mai 2019

Very brief and precisely taught implementing various techniques in Convolution Neural Networks by using Tensorflow. Quite time saving and a good one to boost your skills.

von Ivelin I

•5. Mai 2019

Many thanks to Andrew Ng and team for the great balance of theoretical background, practical references and hands-on programming exercises.

- Google Data Analyst
- Google-Projektmanagement
- Google-UX-Design
- Google IT-Support
- IBM Datenverarbeitung
- IBM Data Analyst
- IBM-Datenanalyse mit Excel und R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack-Cloudentwickler
- Facebook Social Media Marketing
- Facebook Marketinganalyse
- Salesforce Sales Development Representative
- Sales Operations in Salesforce
- Buchhaltung mit Intuit
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Architect
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Data Engineer
- Eine Karriere starten
- Auf eine Zertifizierung vorbereiten
- Bringen Sie Ihre Karriere voran

- Kostenlose Kurse
- Lernen Sie eine Sprache
- Python
- Java
- Webdesign
- SQL
- Gratiskurse
- Microsoft Excel
- Projektmanagement
- Cybersicherheit
- Personalwesen
- Kostenlose Kurse in Datenverarbeitung
- Englisch sprechen
- Inhalte verfassen
- Full-Stack-Webentwicklung
- Künstliche Intelligenz
- C-Programmierung
- Kommunikationsfähigkeiten
- Blockchain
- Alle Kurse anzeigen

- Kompetenzen für Datenwissenschaftsteams
- Datengestützte Entscheidungsfindung
- Kompetenzen im Bereich Software Engineering
- Soft Skills für Ingenieurteams
- Management-Kompetenzen
- Marketing-Kompetenzen
- Kompetenzen für Vertriebsteams
- Produktmanager-Kompetenzen
- Kompetenzen im Bereich Finanzen
- Beliebte Kurse in Datenverarbeitung im Vereinigten Königreich
- Beliebte Technologiekurse in Deutschland
- Beliebte Zertifizierungen für Cybersicherheit
- Beliebte IT-Zertifizierungen
- Beliebte SQL-Zertifizierungen
- Karriereleitfaden für Marketing-Manager
- Karriereleitfaden für Projektmanager
- Python-Programmierkenntnisse
- Karriereleitfaden für Webentwickler
- Datenanalysefähigkeiten
- Kompetenzen für UX-Designer

- MasterTrack® Certificates
- Zertifikate über berufliche Qualifikation
- Universitätszertifikate
- MBA- und Business-Abschlüsse
- Abschlüsse in Data Science
- Abschlüsse in Informatik
- Abschlüsse in Datenanalyse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Sozialwissenschaften
- Management-Abschlüsse
- Abschlüsse von europäischen Spitzenuniversitäten
- Masterabschlüsse
- Bachelorabschlüsse
- Studiengänge mit Performance Pathway
- BSc-Kurse
- Was ist ein Bachelorabschluss?
- Wie lange dauert ein Masterstudium?
- Lohnt sich ein Online-MBA?
- 7 Finanzierungsmöglichkeiten für die Graduate School
- Alle Zertifikate anzeigen