Chevron Left
Zurück zu Custom Models, Layers, and Loss Functions with TensorFlow

Bewertung und Feedback des Lernenden für Custom Models, Layers, and Loss Functions with TensorFlow von deeplearning.ai

4.9
Sterne
810 Bewertungen

Über den Kurs

In this course, you will: • Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network. • Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data. • Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions. • Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....

Top-Bewertungen

PK

3. Feb. 2021

It is advanced TF specialization and the way contents are presented in the course are very systematically. Definitely recommended for developers already familiar with TF and wanted to explore further.

MS

24. Nov. 2020

Really great course, it teaches you all about the TF API and how to customize it for your needs, i thought only pytorch can make that as it's really pythonic, but i am a nieve noob what can i say.

Filtern nach:

126 - 150 von 176 Bewertungen für Custom Models, Layers, and Loss Functions with TensorFlow

von M. A A

11. Feb. 2021

von Kyhoname

10. Nov. 2022

von NABHAN T Y

9. Juli 2021

von Dimuthu L

13. Feb. 2021

von Carlos C G

7. März 2021

von Alexander A

25. Aug. 2021

von Nguyễn N N F

12. Juli 2021

von Parma R R

11. Feb. 2022

von Aleksandr S

28. Jan. 2021

von Ruben G C

6. Jan. 2022

von Linzhi X

4. Juni 2021

von Abhishek P

3. März 2021

von CARLOS A L F

19. Aug. 2022

von Jadesola A

7. Nov. 2022

von Shaun S K

15. Juli 2022

von Yash S

7. Mai 2021

von Jorge S

29. März 2021

von 19020489 N H V

13. Sep. 2021

von Aleksander Z

18. Jan. 2021

von Abhisek G

5. Apr. 2022

von Hoang D

19. Nov. 2021

von Farhad A

29. Juli 2021

von Md. F I

25. März 2021

von Socrates M

2. März 2021

von Hùng B Q

18. Sep. 2021