Chevron Left
Zurück zu Custom Models, Layers, and Loss Functions with TensorFlow

Bewertung und Feedback des Lernenden für Custom Models, Layers, and Loss Functions with TensorFlow von

808 Bewertungen

Über den Kurs

In this course, you will: • Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network. • Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data. • Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions. • Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....



3. Feb. 2021

It is advanced TF specialization and the way contents are presented in the course are very systematically. Definitely recommended for developers already familiar with TF and wanted to explore further.


14. Jan. 2021

Wow! What a course it is! Amazing. Thanks to DeepLearningAi and Laurence for this course. But the mentors should be more active in the discussion forum. Not everyone is not comfortable with slack.

Filtern nach:

151 - 175 von 176 Bewertungen für Custom Models, Layers, and Loss Functions with TensorFlow

von phát t

26. Juli 2021

von kingjs

3. Mai 2022

von Javier B

6. Juli 2021

von Bashar A

16. März 2021

von Ariel H

11. Juli 2021

von Mogilevskii K

22. Mai 2021

von omid S

27. März 2021

von Ariz M

31. Juli 2021

von Lalatendu P

20. März 2022

von Chamika G

13. Aug. 2021

von Ignacio L

9. Apr. 2021

von Alexander O (

13. Juni 2021

von Amit H

16. Okt. 2022

von mohit d

10. Sep. 2021

von Yuqi W

24. Apr. 2022

von Thierry K

9. Mai 2022

von Nakshatra G

30. März 2022

von David R

3. Mai 2021

von JackT T

17. Jan. 2021

von Ian S

11. Sep. 2021

von José L

15. Apr. 2021

von Artem M

23. Juli 2021

von Federico C

3. Nov. 2021

von Грачев Д И

11. Feb. 2022

von Ann A

5. Jan. 2021