Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д.
von

Über diesen Kurs
Karriereergebnisse der Lernenden
73%
79%
40%
Kompetenzen, die Sie erwerben
Karriereergebnisse der Lernenden
73%
79%
40%
von

Moscow Institute of Physics and Technology
Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой.

Yandex
Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world.

E-Learning Development Fund
Фонд развития онлайн-образования (ФРОО) объединяет образовательные стартапы, проекты в области EdTech и запускает собственные онлайн-программы в области машинного обучения, программирования, мобильной разработки, VR, дизайна и IT. Мы выстраиваем экосистему для обучения на всех стадиях жизненного цикла: от идеи и поиска средств на производство образовательной программы до поддержки, продаж и маркетинга. А сотрудничество с крупнейшими образовательными платформами позволяет запускать онлайн-курсы с максимальным эффектом и пользой для всех заинтересованных сторон.
Lehrplan - Was Sie in diesem Kurs lernen werden
Бизнес-задачи
На этой неделе мы разберём две крупные задачи, часто возникающие в бизнес-аналитике. Первая связана с прогнозированием временных рядов; задачи такого типа часто возникают, когда необходимо оценить значение показателя в будущем, основываясь на истории его изменения в прошлом. Такими показателями могут быть спрос на товар, аудитория рекламного баннера, цена акций и т.д. Вторя задача — это анализ поведения пользователей. Класс задач, связанных с анализом пользовательских данных, неизбежно появляется практически в любой сфере бизнеса, подразумевающей работу с клиентами. Как правило, это такие задачи, как привлечение пользователей, работа с аудиторией, прогнозирование оттока и удержание клиентов.
Анализ медиа
Вторая неделя посвящена вопросам компьютерного зрения. Мы обсудим базовые методы обработки изображений и поговорим про такие задачи, как классификация изображений, распознавание лиц, детекция объектов и семантическая сегментация. Благодаря развитию глубоких нейронных сетей, за последние несколько лет во всех этих задачах достигнут огромный прогресс. Вы узнаете, как на практике пользоваться нейросетевыми библиотеками, и научитесь быстро собирать и размечать большие коллекции изображений.
Анализ текстов
Данная неделя посвящена работе с особым видом данных — текстами. Тексты встречаются во многих задачах, и при этом свести их к стандартной матрице с объектами и признаками не так просто. В этом модуле мы изучим основы работы с текстовыми данными, способы генерации признаков на их основе, поговорим о нейросетевых подходах (в частности, word2vec и рекуррентные сети). Также мы обсудим несколько конкретных прикладных задач анализа текстов, среди которых будут анализ тональности и аннотирование.
Рекомендации и ранжирование
На этой неделе вы познакомитесь с задачами, в которых нужно оценивать "интересность" различных объектов для пользователя - задачей ранжирования, актуальной при построении поиска, и задачей построения рекомендательных систем, возникающей при необходимости посоветовать пользователю некоторый контент (фильмы, музыку, статьи) или товары в интернет-магазине.
Bewertungen
Top-Bewertungen von ПРИКЛАДНЫЕ ЗАДАЧИ АНАЛИЗА ДАННЫХ
Курс интересен тем, что в нем рассматриваются примеры реальных задач, которые решаются в индустрии. Но мне он показался слишком простым по сравнению с 2,3 и 4 курсами. Можно усложнить его немного :)
Не понравилось задание по программированию из недели 4 (ранжирование) - все 4 ответа требуют по сути написания полного кода, нет возможности проверить частично выполненную работу
Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.
качество курса немного хромает по сравнению в предыдущими (менее "академичные лекции, pdf с материалом отсутствует). но в целом, лучшее из прошлых курсов сохранено.
Über den Spezialisierung Машинное обучение и анализ данных
Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач.

Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich diese Spezialisierung abonniere?
Is financial aid available?
Erhalte ich akademische Leistungspunkte für den Abschluss des Kurses?
Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..