This course will teach you how to leverage the power of Python and artificial intelligence to create and test hypothesis. We'll start for the ground up, learning some basic Python for data science before diving into some of its richer applications to test our created hypothesis. We'll learn some of the most important libraries for exploratory data analysis (EDA) and machine learning such as Numpy, Pandas, and Sci-kit learn. After learning some of the theory (and math) behind linear regression, we'll go through and full pipeline of reading data, cleaning it, and applying a regression model to estimate the progression of diabetes. By the end of the course, you'll apply a classification model to predict the presence/absence of heart disease from a patient's health data.
Dieser Kurs ist Teil der Spezialisierung Spezialisierung AI for Scientific Research
von

Über diesen Kurs
None
Was Sie lernen werden
Employ artificial intelligence techniques to test hypothesis in Python
Apply a machine learning model combining Numpy, Pandas, and Scikit-Learn
Kompetenzen, die Sie erwerben
- Data Science
- Machine Learning
- regression
- Statistical Hypothesis Testing
- medical data
None
von
Lehrplan - Was Sie in diesem Kurs lernen werden
Introduction to Python Programming for Hypothesis Testing
Creating a Hypothesis: Numpy, Pandas, and Scikit-Learn
Scikit-Learn Revisited: ML for Hypothesis Testing
Using Classification to Predict the Presence of Heart Disease
Bewertungen
- 5 stars54,54 %
- 4 stars15,15 %
- 3 stars12,12 %
- 2 stars9,09 %
- 1 star9,09 %
Top-Bewertungen von INTRODUCTION TO DATA SCIENCE AND SCIKIT-LEARN IN PYTHON
Good introduction. A bit too short for a 4-week course. The autograder is not very good, and some solutions are wrong.
meskipun agak eror dalam lab penugasan tapi alhamdulillah sudah bisa
It could be better if we can see where we did wrong after each assignment. Good and well-paced course otherwise
The topic is great, and the linkage and references provided are valuable.
The hands-on quiz should be supported with better instructions and descriptions regarding what to do.
Über den Spezialisierung AI for Scientific Research

Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich diese Spezialisierung abonniere?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.