Zurück zu Data Science Math Skills

4.5

Sterne

7,754 Bewertungen

•

1,753 Bewertungen

Data science courses contain math—no avoiding that! This course is designed to teach learners the basic math you will need in order to be successful in almost any data science math course and was created for learners who have basic math skills but may not have taken algebra or pre-calculus. Data Science Math Skills introduces the core math that data science is built upon, with no extra complexity, introducing unfamiliar ideas and math symbols one-at-a-time.
Learners who complete this course will master the vocabulary, notation, concepts, and algebra rules that all data scientists must know before moving on to more advanced material.
Topics include:
~Set theory, including Venn diagrams
~Properties of the real number line
~Interval notation and algebra with inequalities
~Uses for summation and Sigma notation
~Math on the Cartesian (x,y) plane, slope and distance formulas
~Graphing and describing functions and their inverses on the x-y plane,
~The concept of instantaneous rate of change and tangent lines to a curve
~Exponents, logarithms, and the natural log function.
~Probability theory, including Bayes’ theorem.
While this course is intended as a general introduction to the math skills needed for data science, it can be considered a prerequisite for learners interested in the course, "Mastering Data Analysis in Excel," which is part of the Excel to MySQL Data Science Specialization. Learners who master Data Science Math Skills will be fully prepared for success with the more advanced math concepts introduced in "Mastering Data Analysis in Excel."
Good luck and we hope you enjoy the course!...

VC

May 17, 2020

Effective way to refresh and add the Data Science math skills! Thanks a lot! At the time of the study some of the quizzes content were not rendering correctly on mobile devices (both iPad and Android)

VS

Sep 23, 2020

This course syllabus is great. It starts wonderfully. Week 1 to 4 is taught by Paul Bendich, and Daniel Egger the instruction is awesome. Effective way to refresh and add the Data Science math skills!

Filtern nach:

von Amin A

•Sep 04, 2019

.

von Nagaraj A M

•May 09, 2019

.

von Brendan S

•May 06, 2017

I definitely learned a lot in this course, and, as someone who has historically avoided mathematics, I think it is a fairly good introduction to these concepts for people at my level. However, I think the course was somewhat inconsistent. The final module could really use some more explanation and examples. Probability is a very abstract field, and it can be difficult to take real world examples and translate them into formulas. I think that the module would benefit greatly from spending some extra time on translating english-language situations into formulas. There were also some non-trivial errors in the videos that need to be corrected. Overall, I'm pretty happy with the course but I think it doesn't yet fill out its potential.

von Fereshteh K

•Jul 26, 2020

The first two weeks of the course were well explained. But when it came to the probability, the course was confusing so that I had to search for more sources and learn from YouTube. I have been away from math for a long time, so I took this course which is described as for the beginners. I was extremely confused and disappointed about myself for not understanding the concept of Bayes Theorem for example. But when I checked other sources on YouTube, I could understand it easily and only then I was able to answer the quiz questions. So many basic concepts such as Tree diagram which are extremely helpful for grasping the theories and using them in real life situations were not even mentioned.

von Jean-Baptiste B

•Aug 24, 2020

Pretty good, overall the explanations are clear and the exercises/practice quizzes are really useful to understand the material.

Negative points: the last part on Bayes' Rule and the Binomial Theorem is a bit too fast, and I needed to supplement it by external material to fully understand it. And it would have been great to have a part about linear algebra and maybe calculus, but I guess there were some time and financial constraints that did not allow that.

I still recommend this course, that's a really good refresher or intro. You'll need to supplement it by other material, though.

von Lucia S

•Nov 12, 2018

The course started nice and well explained, there are some useful info missing, e.g. what is Euler's constant and why is it defined as it is and then more practice examples would be also welcome. All that would be fine and I would have given the course full 5 stars, but I felt really discouraged with so many errors in the practice quizes and even in the last graded quiz. Additionally, it was a bit annoying that I could not finish the quiz on my phone as in one of the questions there was only the problem and the possible answers visible, not the question itself.

von benjamin.dubreu

•Sep 23, 2017

If you are familiar with the concepts in this course, it will be fine. If, however, you happen to discover them for the first time here, the instructors go so quickly in their explanations that you'll end up with a high level of frustration.

When it comes to statistics, fewer concepts introduced per video, and more examples of each concepts would have been a better approach for real beginners.

Finally, don't believe you've acquired the "math skills" necessary for data science just by following this course. In this, the title can be seriously misleading.

von Man D

•Apr 04, 2020

The first Half of this course is wonderful. Well presented, interesting and something to look forward to. The second half is done by a different teacher, is confusing, disorganized and and time would be better spent elsewhere. I highly recommend the first half though, and then looking at the topics list for the second half and go elsewhere for those. There are some great recommendations of others videos and courses to cover the 2nd halves content in the course forum as it appears it was a common issue among students.

von David S D

•Jan 26, 2018

This course was a good refresher to some important math concepts needed for further study of statistics and data science. Most of the modules and videos were clear and easy to follow. However, I found the module on probability to be confusing and overly complex in its structure and explanations. For those with stronger math skills than me, it's probably a fairly easy course. I found it appropriately challenging, and for the most part it built my confidence in this important area.

von Lucas L S

•Jan 31, 2018

The course should be a guide text with very detail readings, with a lot of solved examples (complex ones) step by step. The readings should also explain very weel what I'm doing and why I'm doing each step, and in the end explain the exercise as a whole.

The practice quizzes should bring very real life examples (as thouse of VBS tests) and they have to match de guide text.

The videos should be made only from the most comum doubts and mistakes in the practice quizzes.

von Maria S

•Feb 19, 2020

I found the first two.5 modules very well done. However, the second half of week three and week four were very poorly done. I am still uncertain about the applications of Bayes' theorem and the combination/permutation concepts. I had a very difficult time with the last quiz and had to go elsewhere to actually learn what I needed to, and even so, I still do not understand the approach to solving some of the problems. Quite frustrating and not rewarding.

von christopher w

•Feb 25, 2018

The first two weeks were well paced, in week 3 I think too much is covered too quickly and in week 4 there is a further acceleration. That said, the course was good in highlighting the areas that I feel I need to work on and motivated me to take University of Zurich's intro to probability which filled the gap for the content from week 4 here. I think this might be a good refresher course for someone whose knowledge is not too stale.

von Dan H

•Feb 18, 2019

good subject matter choice; however, quality varied between the two professors. weeks 1-3 provided good clear lectures and enough practice questions; but week 4 had several confusing points in the lecture, then not enough practice. I really had to supplement my learning with outside videos and problems for week 4. but i passed the final test first time. thanks for narrowing down the maths needed for data science.

von Patrycja J

•May 12, 2020

Lessons 1-3 are ok. Everything is explained well and you can make the tests easily. 4 is very difficult and despite many trials, I was not able to make it. And because of chapter 4 I suggest you rather take another course.

There is also a technical problem, because the formulas are displayed in java script, so it is not easy to understand how the formula looks like, if you do not know the script :(

von Phyllicia A M B

•Jun 19, 2020

The lectures are very short and simple. Sometimes the explanations are not explained thoroughly. Students without background on the subject will find it difficult to apply the concepts in actual problems like in the quizzes. I hope you can improve your content, discussions, and quizzes so students without background in advance math can enjoy your course. Thank you!

von Brannon C

•May 11, 2020

Helpful overview and review if it’s been a while since you taken stats and probability. But really needs more practice problems with explanations to practice through the workflow on the last two weeks. The formulas and calculations get pretty intense. They have printable handouts that go with all videos that were very helpful.

von Raymond S

•Sep 21, 2019

Keep in mind that this is meant to be an introduction to some of the math topics used in data science, it is not a comprehensive course. The course needs to include worksheets with practice problems for the students to practice. The instructors do not use enough real-world examples to demonstrate how the theory is applied.

von tayebi a

•Apr 25, 2020

je pense qu'il manque quelque définitions ,par exemple , pour dire que la probabilité d'un événement est égal à la somme de probabilités d'intersections de cet événement avec d'autres ,mais en fait on peut dire cela sauf si les autres événements forment un système complet d'événements. mais en général ça reste utile .

von SAYAN B

•Apr 18, 2020

The course videos for the topics for Week 3 and 4 are not well explained. Even some of the questions in the quiz are not written in proper format. Please look into this and make changes to the course. Otherwise the syllabus of the course is well designed and the probability questions are of quite high standard!

von Jeffrey A B

•Jun 22, 2019

Felt like the first 3 weeks were pretty good but the probability section needs a lot more detailed explanations and examples to make the information clear. For those that are already OK with this subject, it's probably fine but for those that haven't had much background in probability, this part was lacking.

von Scott M

•Aug 16, 2020

The first half was planned and organized. The second half seemed haphazard. Examples were a little hard to follow. Quizzes were fine and seemed to test the material presented. I have only taken three other courses (4 total) and this one seemed a little rushed and the second half was created on a whim.

von Danilo C

•Jan 17, 2018

First 2 weeks of the course is amazing, very good didactics. The second teacher does not use very good examples, and the thing starts to fill like old math classes, but overall is good. I will need to redo the last 2 weeks because i fill that I will not remember most of it so easy as the first 2 weeks.

von Saurabh K

•May 27, 2018

Good for high level understanding of few of the concepts. But last week 4 tutorials are covered at very high level , it was quite difficult to understand probability topic without referring to other online tutorials. I wish more examples could be given in the tutorials to strengthen understanding.

von Margaret S

•Jul 25, 2017

The class is good. However, the second half of the class zips through concepts that need a lot more explanation than is provided. Moreover this class would benefit from an optional tutorial on how to input factorials into a calculator as the answers on the exam go to the 8th decimal place.

von Taruna J

•Aug 06, 2020

Some concepts have been explained beautifully, which made things easier to understand. Some concepts (probability) I earlier understood so very well, but now I am confused with the teachings from this course. I don't really like how it has been explained.

- Sinn und Zweck im Leben finden
- Medizinische Forschung verstehen
- Japanisch für Anfänger
- Einführung in Cloud Computing
- Grundlagen der Achtsamkeit
- Grundlagen des Finanzwesens
- Maschinelles Lernen
- Maschinelles Lernen mittels Sas Viya
- Die Wissenschaft des Wohlbefindens
- Contact-Tracing im Kontext von COVID-19
- KI für alle
- Finanzmärkte
- Einführung in die Psychologie
- Erste Schritte mit AWS
- Internationales Marketing
- C++
- Predictive Analytics und Data-Mining
- UCSD: Learning How to Learn
- Michigan: Programming for Everybody
- JHU: R-Programmierung
- Google CBRS CPI Training

- Natural Language Processing (NLP)
- KI für Medizin
- Guter Umgang mit Worten: Redaktionelles Schreiben
- Modellbildung von Infektionskrankheiten
- Die Aussprache des US-amerikanischen Englisch
- Software-Testautomatisierung
- Deep Learning
- Python für alle
- Data Science
- Geschäftsgründungen
- Excel-Kenntnisse für Beruf
- Data Science mit Python
- Finance for Everyone
- Kommunikationsfähigkeiten für Ingenieure
- Verkaufstraining
- Career Brand Management
- Wharton: Unternehmensanalytik
- Penn: Positive Psychology
- Washington: Maschinelles Lernen
- CalArts: Grafikdesign

- Zertifikate über berufliche Qualifikation
- MasterTrack-Zertifizierungen
- Google IT-Support
- IBM Datenverarbeitung
- Google Cloud Data Engineering
- IBM Applied AI
- Google Cloud Architecture
- IBM Cybersecurity Analyst
- Google IT Automation with Python
- IBM z/OS Mainframe Practitioner
- UCI: Angewandtes Projektmanagement
- Zertifizierung in Instructional Design
- Zertifizierung in Bauwesen und -management
- Zertifizierung in Big Data
- Zertifizierung Maschinelles Lernen für Analytics
- Zertifizierung in Innovation Management & Entrepreneurship
- Zertifizierung in Nachhaltigkeit und Entwicklung
- Zertifizierung in Soziale Arbeit
- Zertifizierung KI und maschinelles Lernen
- Zertifizierung in Räumliche Datenanalyse und Visualisierung

- Abschlüsse in Informatik
- Business-Abschlüsse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Data Science
- Bachelorabschlüsse
- Bachelor of Computer Science
- MS Elektrotechnik
- Bachelor Completion Degree
- MS Management
- MS Informatik
- MPH
- Master-Abschluss in Buchhaltung
- MCIT
- MBA online
- Master of Applied Data Science
- Global MBA
- Master in Innovation & Entrepreneurship
- MCS Data Science
- Master in Informatik
- Master-Abschluss in Public Health