Über diesen Kurs
6,150 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 45 Stunden zum Abschließen

Empfohlen: 9 weeks of study, 4-8 hours/week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 45 Stunden zum Abschließen

Empfohlen: 9 weeks of study, 4-8 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
23 Minuten zum Abschließen

Introduction

This is just a two-minutes advertisement and a short reference list....
1 Video (Gesamt 3 min), 2 Lektüren
2 Lektüren
Introduction/Manual10m
References10m
2 Stunden zum Abschließen

Week 1

We introduce the basic notions such as a field extension, algebraic element, minimal polynomial, finite extension, and study their very basic properties such as the multiplicativity of degree in towers....
6 Videos (Gesamt 84 min), 1 Quiz
6 Videos
1.2 Algebraic elements. Minimal polynomial.12m
1.3 Algebraic elements. Algebraic extensions.14m
1.4 Finite extensions. Algebraicity and finiteness.14m
1.5 Algebraicity in towers. An example.14m
1.6. A digression: Gauss lemma, Eisenstein criterion.13m
1 praktische Übung
Quiz 140m
Woche
2
2 Stunden zum Abschließen

Week 2

We introduce the notion of a stem field and a splitting field (of a polynomial). Using Zorn's lemma, we construct the algebraic closure of a field and deduce its unicity (up to an isomorphism) from the theorem on extension of homomorphisms....
5 Videos (Gesamt 67 min), 1 Quiz
5 Videos
2.2 Splitting field.11m
2.3 An example. Algebraic closure.14m
2.4 Algebraic closure (continued).15m
2.5 Extension of homomorphisms. Uniqueness of algebraic closure.11m
1 praktische Übung
QUIZ 240m
Woche
3
4 Stunden zum Abschließen

Week 3

We recall the construction and basic properties of finite fields. We prove that the multiplicative group of a finite field is cyclic, and that the automorphism group of a finite field is cyclic generated by the Frobenius map. We introduce the notions of separable (resp. purely inseparable) elements, extensions, degree. We briefly discuss perfect fields. This week, the first ungraded assignment (in order to practice the subject a little bit) is given. ...
6 Videos (Gesamt 82 min), 1 Lektüre, 1 Quiz
6 Videos
3.2 Properties of finite fields.14m
3.3 Multiplicative group and automorphism group of a finite field.15m
3.4 Separable elements.15m
3.5. Separable degree, separable extensions.15m
3.6 Perfect fields.9m
1 Lektüre
Ungraded assignment 1
1 praktische Übung
QUIZ 340m
Woche
4
2 Stunden zum Abschließen

Week 4

This is a digression on commutative algebra. We introduce and study the notion of tensor product of modules over a ring. We prove a structure theorem for finite algebras over a field (a version of the well-known "Chinese remainder theorem")....
6 Videos (Gesamt 91 min), 1 Quiz
6 Videos
4.2 Tensor product of modules14m
4.3 Base change14m
4.4 Examples. Tensor product of algebras.15m
4.5 Relatively prime ideals. Chinese remainder theorem.14m
4.6 Structure of finite algebras over a field. Examples.16m
1 praktische Übung
QUIZ 440m
Woche
5
4 Stunden zum Abschließen

Week 5

We apply the discussion from the last lecture to the case of field extensions. We show that the separable extensions remain reduced after a base change: the inseparability is responsible for eventual nilpotents. As our next subject, we introduce normal and Galois extensions and prove Artin's theorem on invariants. This week, the first graded assignment is given....
6 Videos (Gesamt 81 min), 2 Quiz
6 Videos
5.2 Separability and base change14m
5.3 Separability and base change (cont'd). Primitive element theorem.14m
5.4 Examples. Normal extensions.13m
5.5 Galois extensions.11m
5.6 Artin's theorem.13m
1 praktische Übung
QUIZ 540m
Woche
6
2 Stunden zum Abschließen

Week 6

We state and prove the main theorem of these lectures: the Galois correspondence. Then we start doing examples (low degree, discriminant, finite fields, roots of unity)....
6 Videos (Gesamt 86 min), 1 Quiz
6 Videos
6.2 The Galois correspondence14m
6.3 Galois correspondence (cont'd). First examples (polynomials of degree 2 and 3.14m
6.4 Discriminant. Degree 3 (cont'd). Finite fields.15m
6.5 An infinite degree example. Roots of unity: cyclotomic polynomials14m
6.6 Irreducibility of cyclotomic polynomial.The Galois group.14m
1 praktische Übung
QUIZ 640m
Woche
7
4 Stunden zum Abschließen

Week 7

We continue to study the examples: cyclotomic extensions (roots of unity), cyclic extensions (Kummer and Artin-Schreier extensions). We introduce the notion of the composite extension and make remarks on its Galois group (when it is Galois), in the case when the composed extensions are in some sense independent and one or both of them is Galois. The notion of independence is also given a precise sense ("linearly disjoint extensions"). This week, an ungraded assignment is given....
7 Videos (Gesamt 87 min), 1 Lektüre
7 Videos
7.2. Kummer extensions.14m
7.3. Artin-Schreier extensions.11m
7.4. Composite extensions. Properties.13m
7.5. Linearly disjoint extensions. Examples.15m
7.6. Linearly disjoint extensions in the Galois case.12m
7.7 On the Galois group of the composite.7m
1 Lektüre
Ungraded assignment 25m
Woche
8
2 Stunden zum Abschließen

Week 8

We finally arrive to the source of Galois theory, the question which motivated Galois himself: which equation are solvable by radicals and which are not? We explain Galois' result: an equation is solvable by radicals if and only if its Galois group is solvable in the sense of group theory. In particular we see that the "general" equation of degree at least 5 is not solvable by radicals. We briefly discuss the relations to representation theory and to topological coverings....
6 Videos (Gesamt 81 min), 1 Quiz
6 Videos
8.2. Properties of solvable groups. Symmetric group.13m
8.3.Galois theorem on solvability by radicals.11m
8.4.Examples of equations not solvable by radicals."General equation".13m
8.5. Galois action as a representation. Normal base theorem.14m
8.6. Normal base theorem (cont'd). Relation with coverings.12m
1 praktische Übung
QUIZ 840m
Woche
9
4 Stunden zum Abschließen

Week 9.

We build a tool for finding elements in Galois groups, learning to use the reduction modulo p. For this, we have to talk a little bit about integral ring extensions and also about norms and traces.This week, the final graded assignment is given....
6 Videos (Gesamt 84 min), 2 Quiz
6 Videos
9.2. Integral extensions, integral closure, ring of integers of a number field.15m
9.3. Norm and trace.14m
9.4. Norm and trace (cont'd). Ring of integers is a free module.13m
9.5. Reduction modulo a prime.13m
9.6. Reduction modulo a prime and finding elements in Galois groups.14m
1 praktische Übung
QUIZ 940m
4.3
27 BewertungenChevron Right

Top-Bewertungen

von CLJun 16th 2016

Outstanding course so far - a great refresher for me on Galois theory. It's nice to see more advanced mathematics classes on Coursera.

Dozent

Avatar

Ekaterina Amerik

Professor
Department of Mathematics

Über National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..