Über diesen Kurs

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: 8–10 Stunden innerhalb einer Woche...

Deutsch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: 8–10 Stunden innerhalb einer Woche...

Deutsch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
17 Minuten zum Abschließen

Einführung

Zum Schreiben von Programmen für maschinelles Lernen verwenden wir TensorFlow. Dieser Kurs bietet daher eine Einführung in das Tool. Im ersten Kurs haben Sie erfahren, wie Sie geschäftliche Herausforderungen in Aufgaben für das maschinelle Lernen umformulieren. Sie haben gelernt, wie maschinelles Lernen in der Praxis funktioniert und wie Sie verwertbare Datasets erstellen. Nachdem Sie die benötigten Daten erfasst haben, können Sie mit dem Schreiben von ML-Programmen beginnen....
2 Videos (Gesamt 7 min), 1 Lektüre
2 Videos
Einführung in Qwiklabs5m
1 Lektüre
Kursressourcen herunterladen10m
3 Stunden zum Abschließen

Kernkonzept von TensorFlow

Dies ist eine Einführung in die Hauptkomponenten von TensorFlow und Sie lernen in praktischen Übungen, wie Sie ein ML-Programm erstellen. Außerdem vergleichen und schreiben Sie Programme für verzögerte Bewertungen sowie erforderliche Programme, arbeiten mit Graphen, Sitzungen und Variablen und beheben schließlich Fehler in TensorFlow-Programmen. ...
19 Videos (Gesamt 72 min), 4 Quiz
19 Videos
Was ist TensorFlow?2m
Vorteile von gerichteten Graphen5m
TensorFlow API-Hierarchie3m
Verzögerte Bewertung4m
Graph und Sitzung4m
Tensoren auswerten2m
Graphen visualisieren2m
Tensoren6m
Variablen6m
Lab-Einführung: Low-Level-TensorFlow-Programme schreiben16
Lösungen für das Lab8m
Einführung5m
Formprobleme3m
Formprobleme lösen2m
Probleme mit Datentypen1m
Fehlerbehebung bei Vollprogrammen4m
Einführung: Fehlerbehebung bei Vollprogrammen15
Demo: Fehlerbehebung bei Vollprogrammen3m
3 praktische Übungen
Was ist TensorFlow?2m
Graph und Sitzung8m
Kernkonzept von TensorFlow20m
Woche
2
4 Stunden zum Abschließen

Estimator API

In diesem Modul wird die Estimator API erläutert....
18 Videos (Gesamt 67 min), 4 Quiz
18 Videos
Estimator API3m
Vorgefertigte Estimators5m
Demo: Modell über Hauspreise1m
Prüfpunktausführung1m
Datensätze im Speicher trainieren2m
Lab-Einführung: Estimator API39
Lösungen für das Lab: Estimator API10m
Mit Dataset API große Datensätze trainieren8m
Lab-Einführung: TensorFlow-Aufnahme mit Batching hochskalieren35
Lösungen für das Lab: TensorFlow-Aufnahme mit Batching hochskalieren5m
Große Aufträge, verteiltes Training6m
Mit TensorBoard überwachen3m
Demo: TensorBoard-Benutzeroberfläche28
Bereitstellungseingabefunktion5m
Zusammenfassung Estimator API1m
Lab-Einführung: TensorFlow-Modelle für verteiltes Training mit Estimator API erstellen51
Lösungen für das Lab: TensorFlow-Modelle für verteiltes Training mit Estimator API erstellen7m
1 praktische Übung
Estimator API18m
Woche
3
2 Stunden zum Abschließen

TensorFlow-Modelle mit CMLE skalieren

In diesem Modul erfahren Sie, wie Sie Ihr TensorFlow-Modell in der verwalteten Infrastruktur der GCP durch maschinelles Lernen trainieren und bereitstellen....
6 Videos (Gesamt 29 min), 2 Quiz
6 Videos
Gründe für die Cloud Machine Learning Engine6m
Modelle trainieren2m
Trainingsjobs überwachen und bereitstellen2m
Lab-Einführung: TensorFlow mit Cloud Machine Learning Engine skalieren50
Lösungen für das Lab: TensorFlow mit Cloud Machine Learning Engine skalieren16m
1 praktische Übung
Cloud MLE10m
2 Minuten zum Abschließen

Zusammenfassung

Hier fassen wir die bisher in diesem Kurs behandelten TensorFlow-Themen zusammen. Wir gehen noch einmal auf den Kerncode von TensorFlow und die Estimator API ein. Den Abschluss bildet die Skalierung Ihrer Modelle für maschinelles Lernen mit Cloud Machine Learning Engine....
1 Video (Gesamt 2 min)
1 Video

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Über die Spezialisierung Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch

Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Was sind die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum darf keine dieser Phasen übersprungen werden? Warum sind neuronale Netze gerade so beliebt? Wie können Sie ein Projekt für betreutes Lernen gestalten und mithilfe des Gradientenverfahrens und sinnvoll erstellten Datasets eine gute, generalisierbare Lösung finden? In diesem Kurs lernen Sie, verteilte Modelle für ML zu schreiben, die in TensorFlow skaliert werden, das Training dieser Modelle horizontal zu skalieren und leistungsstarke Vorhersagen zu erstellen. Wir gehen darauf ein, wie Sie Rohdaten so in Merkmale umwandeln, dass ML wichtige Eigenschaften dieser Daten erlernen kann und menschliche Einblicke in das Problem zulässt. Schließlich lernen Sie, die richtige Mischung aus Parametern zu verwenden, um präzise und generalisierte Modelle zu erstellen, und Sie erhalten eine Einführung in die Theorie zum Lösen bestimmter Arten von ML-Problemen. Auf diese Weise gewinnen Sie ein umfassendes Verständnis von ML. Zuerst erstellen Sie eine auf ML ausgerichtete Strategie. Dann fahren Sie mit Modelltraining, Optimierung und Produktentwicklung fort. Hierbei helfen Ihnen praxisorientierte Labs der Google Cloud Platform. >>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch

Häufig gestellte Fragen

  • Ja, Sie können eine Vorschau des ersten Videos und den Lehrplan ansehen, bevor Sie sich anmelden. Sie müssen den Kurs kaufen, um Zugriff auf die Inhalte zu erhalten, die nicht in der Vorschau inbegriffen sind.

  • Wenn Sie sich vor dem Startdatum der ersten Kurseinheit anmelden, haben Sie Zugriff auf alle Vortragsvideos und Texte für den Kurs. Sobald die erste Kurseinheit beginnt, können Sie Aufgaben einreichen.

  • Sobald Sie sich anmelden und Ihre Kurseinheit beginnt, haben Sie Zugriff auf alle Videos und andere Ressourcen, einschließlich der Texte und des Kurs-Diskussionsforums. Sie können praktische Aufgaben ansehen und einreichen und erforderliche bewertete Aufgaben abschließen, um eine Bewertung und ein Kurszertifikat zu erhalten.

  • Wenn Sie den Kurs erfolgreich abschließen, wird der Seite „Errungenschaften“ Ihr elektronisches Kurszertifikat hinzugefügt – von dort können Sie Ihr Kurszertifikat ausdrucken oder es zu Ihrem LinkedIn-Profil hinzufügen.

  • Dieser Kurs ist einer der wenigen auf Coursera angebotenen Kurse, die derzeit ausschließlich für Kursteilnehmer zugänglich sind, die bezahlt oder finanzielle Unterstützung erhalten haben, wenn diese verfügbar ist.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..