Über diesen Kurs
1,979 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: 1 semana de estudio, de 8 a 10 horas por semana...

Spanisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 12 Stunden zum Abschließen

Empfohlen: 1 semana de estudio, de 8 a 10 horas por semana...

Spanisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
7 Minuten zum Abschließen

Introducción

Comenzaremos el curso con una introducción de TensorFlow, la herramienta que usaremos para escribir programas de aprendizaje automático. En el primer curso, aprendió a formular problemas de negocios como problemas de aprendizaje automático. En el segundo, aprendió cómo funciona el aprendizaje automático en la práctica y cómo crear conjuntos de datos para ese uso específico. Ahora que ya cuenta con los datos necesarios, es hora de prepararse para escribir programas de aprendizaje automático.

...
2 Videos (Gesamt 7 min)
2 Videos
Introducción a Qwiklabs5m
3 Stunden zum Abschließen

Aspectos básicos de TensorFlow

Le presentaremos los componentes centrales de TensorFlow y obtendrá experiencia práctica en la compilación de programas de aprendizaje automático. Comparará y escribirá programas imperativos y de evaluación perezosa; trabajará con gráficos, sesiones y variables y, por último, depurará programas de TensorFlow.

...
19 Videos (Gesamt 72 min), 4 Quiz
19 Videos
¿Qué es TensorFlow?2m
Beneficios de un grafo dirigido5m
Jerarquía de la API de TensorFlow3m
Evaluación perezosa4m
Gráficos y sesiones4m
Cómo evaluar un tensor2m
Cómo visualizar un grafo2m
Tensores6m
Variables6m
Introducción al lab Escritura de programas de TensorFlow de nivel bajo16
Solución del lab8m
Introducción5m
Problemas de forma3m
Cómo corregir problemas de forma2m
Problemas de tipos de datos1m
Depuración de programas completos4m
Introducción a la depuración de programas completos15
Demostración: Depuración de programas completos3m
3 praktische Übungen
¿Qué es TensorFlow?2m
Gráfico y sesión8m
Aspectos básicos de TensorFlow20m
Woche
2
4 Stunden zum Abschließen

API de Estimator

En este módulo, aprenderá sobre la API de Estimator.

...
18 Videos (Gesamt 67 min), 4 Quiz
18 Videos
API de Estimator3m
Estimadores prediseñados5m
Demostración: Modelo de predicción de precios de viviendas1m
Controles1m
Entrenamiento de conjuntos de datos en la memoria2m
Introducción al lab API de Estimator39
Solución del lab API de Estimator10m
Entrenamiento de conjuntos de datos grandes con la API de Dataset8m
Introducción al lab Cómo escalar la transferencia de TensorFlow mediante lotes35
Solución del lab Cómo escalar la transferencia de TensorFlow mediante lotes5m
Trabajos grandes y entrenamiento distribuido6m
Supervisión con TensorBoard3m
Demostración de la IU de TensorBoard28
Función de entradas de entregas5m
Resumen: API de Estimator1m
Introducción al lab Creación de un modelo de TensorFlow para entrenamiento distribuido con la API de Estimator51
Solución del lab: Creación de un modelo de TensorFlow para entrenamiento distribuido con la API de Estimator7m
1 praktische Übung
Estimator API18m
Woche
3
2 Stunden zum Abschließen

Escalamiento de modelos de TensorFlow con CMLE

En esta sesión, hablaremos sobre cómo tomar un modelo de TensorFlow y entrenarlo en la infraestructura administrada de GCP para el entrenamiento y la implementación de modelos de aprendizaje automático.

...
6 Videos (Gesamt 29 min), 2 Quiz
6 Videos
¿Por qué usar Cloud Machine Learning Engine?6m
Entrenamiento de un modelo2m
Implementación y supervisión de trabajos de entrenamiento2m
Introducción al lab Cómo escalar TensorFlow con Cloud Machine Learning Engine50
Solución del lab Cómo escalar TensorFlow con Cloud Machine Learning Engine16m
1 praktische Übung
Cuestionario: Cloud MLE10m
2 Minuten zum Abschließen

Resumen

En esta sesión, resumimos los temas de TensorFlow que se trataron durante este curso. Repasaremos el código básico de TensorFlow y la API de Estimator, y terminaremos con el escalamiento de los modelos de aprendizaje automático con Cloud Machine Learning Engine.

...
1 Video (Gesamt 2 min)
1 Video

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Über die Spezialisierung Machine Learning with TensorFlow on Google Cloud Platform en Español

¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? ¿Cuáles son las cinco fases para convertir un posible caso práctico en un recurso que pueda aprovechar la tecnología de aprendizaje automático? ¿Por qué es importante no saltarse fases? ¿Por qué las redes neuronales son tan populares? ¿Cómo plantear un problema de aprendizaje supervisado y encontrar una buena solución generalizable mediante un descenso de gradientes y una forma meditada de crear conjuntos de datos? Aprenda a escribir modelos de aprendizaje automático distribuido que escalen en Tensorflow y que brinden predicciones de alto rendimiento. Convierta los datos sin procesar en funciones de una forma que permita al AA aprender características importantes de los datos y aportar una percepción humana para abordar los problemas. Por último, aprenda a incorporar la combinación adecuada de parámetros que desarrolle modelos generalizados y exactos, y conozca la teoría para solucionar determinados tipos de problemas de AA. Experimentará con el AA de extremo a extremo, a partir de la construcción de una estrategia centrada en el AA y el avance hacia el entrenamiento, optimización y producción de modelos con labs prácticos mediante Google Cloud Platform. >>> Al inscribirse en esta especialización acepta los Términos de Servicio de Qwiklabs según lo establecido en las Preguntas Frecuentes, disponibles en el apartado: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform en Español

Häufig gestellte Fragen

  • Ja, Sie können eine Vorschau des ersten Videos und den Lehrplan ansehen, bevor Sie sich anmelden. Sie müssen den Kurs kaufen, um Zugriff auf die Inhalte zu erhalten, die nicht in der Vorschau inbegriffen sind.

  • Wenn Sie sich vor dem Startdatum der ersten Kurseinheit anmelden, haben Sie Zugriff auf alle Vortragsvideos und Texte für den Kurs. Sobald die erste Kurseinheit beginnt, können Sie Aufgaben einreichen.

  • Sobald Sie sich anmelden und Ihre Kurseinheit beginnt, haben Sie Zugriff auf alle Videos und andere Ressourcen, einschließlich der Texte und des Kurs-Diskussionsforums. Sie können praktische Aufgaben ansehen und einreichen und erforderliche bewertete Aufgaben abschließen, um eine Bewertung und ein Kurszertifikat zu erhalten.

  • Wenn Sie den Kurs erfolgreich abschließen, wird der Seite „Errungenschaften“ Ihr elektronisches Kurszertifikat hinzugefügt – von dort können Sie Ihr Kurszertifikat ausdrucken oder es zu Ihrem LinkedIn-Profil hinzufügen.

  • Dieser Kurs ist einer der wenigen auf Coursera angebotenen Kurse, die derzeit ausschließlich für Kursteilnehmer zugänglich sind, die bezahlt oder finanzielle Unterstützung erhalten haben, wenn diese verfügbar ist.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..