References
 [1] Blei, D. M., Kucukelbir, A., McAuliffe, J. D. (2017) Variational inference: a review for statisticians, Journal of the American Statistical Association, 112 (518), 859–877.
 [2] Burda, Y., Grosse, R., Salakhutdinov, R. (2016) Importance weighted autoencoders, arXiv:1509.00519.
 [3] Giles, M. B. (2008) Multilevel Monte Carlo path simulation, Operations Research, 56, 607–617.
 [4] Giles, M. B. (2015) Multilevel Monte Carlo methods, Acta Numerica, 24, 259–328.
 [5] Goda, T., Hironaka, T., Iwamoto, T. (2019) Multilevel Monte Carlo estimation of expected information gains, arXiv:1811.07546 (accepted for publication in Stochastic Analysis and Applications).
 [6] Hironaka, T., Giles, M. B., Goda, T., Thom, H. (2019) Multilevel Monte Carlo estimation of the expected value of sample information, arXiv:1909.00549.
 [7] Kingma, D. P., Welling, M. (2014) Autoencoding variational Bayes, arXiv:1312.6114.

[8]
Nowozin, S. (2018) Debiasing evidence approximations: on importanceweighted autoencoders and Jackknife variational inference, ICLR 2018 conference paper.

[9]
Rhee, C. H., Glynn, P. (2015) Unbiased estimation with square root convergence for SDE models, Operations Research, 63, 1026–1043.
Comments
There are no comments yet.