Computer Vision is one of the most exciting fields in Machine Learning and AI. It has applications in many industries, such as self-driving cars, robotics, augmented reality, and much more. In this beginner-friendly course, you will understand computer vision and learn about its various applications across many industries.
von


Über diesen Kurs
Könnte Ihr Unternehmen von Mitarbeiterweiterbildungen für gefragte Kompetenzen profitieren?
Probieren Sie Coursera for Business ausKompetenzen, die Sie erwerben
- Deep Learning
- Opencv
- Artificial Intelligence (AI)
- Image Processing
- Computer Vision
Könnte Ihr Unternehmen von Mitarbeiterweiterbildungen für gefragte Kompetenzen profitieren?
Probieren Sie Coursera for Business ausLehrplan - Was Sie in diesem Kurs lernen werden
Introduction to Computer Vision
Image Processing with OpenCV and Pillow
Machine Learning Image Classification
Neural Networks and Deep Learning for Image Classification
Bewertungen
- 5 stars64,25 %
- 4 stars20,02 %
- 3 stars7,01 %
- 2 stars3,95 %
- 1 star4,75 %
Top-Bewertungen von INTRODUCTION TO COMPUTER VISION AND IMAGE PROCESSING
I enjoyed the course. I had problems with the last lab with error messages cause by the updates but the forum was helpful in figuring things out.
Thoroughly enjoyed this course. Learned about OpenCV a bit and added to my small knowledge of Python. The ability to know how to train Watson to do optical recognizition will be invaluable.
There are a few issues with the labs. Please review them. Additionally it would be helpful to provide instructions in every lab for federated users.
The course is well designed. The only issue I have witnessed was during running LAB in Jupyter Notebook, I hope it will be fixed soon.
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich dieses Zertifikat abonniere?
What will I be able to do after completing this course?
Are there any software or hardware pre-requistes for this course?
Are there any pre-requisties or prior experience necssary for this course?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.