Über diesen Kurs

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 7 Stunden zum Abschließen

Empfohlen: 10 hours/week...

Deutsch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 7 Stunden zum Abschließen

Empfohlen: 10 hours/week...

Deutsch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
14 Minuten zum Abschließen

Einführung

1 Video (Gesamt 4 min), 1 Lektüre
1 Video
1 Lektüre
Kursressourcen herunterladen10m
1 Stunde zum Abschließen

ML in der Praxis

10 Videos (Gesamt 62 min), 1 Quiz
10 Videos
Betreutes Lernen5m
Regression und Klassifizierung11m
Kurzer Rückblick auf ML: Lineare Regression7m
Kurzer Rückblick auf ML: Perzeptron5m
Kurzer Rückblick auf ML: Neuronale Netzwerke7m
Kurzer Rückblick auf ML: Entscheidungsbäume5m
Kurzer Rückblick auf ML: Kernel-Methoden4m
Kurzer Rückblick auf ML: Random Forests4m
Kurzer Rückblick auf ML: Moderne neuronale Netzwerke8m
1 praktische Übung
Modul-Quiz6m
1 Stunde zum Abschließen

Optimierung

13 Videos (Gesamt 61 min), 1 Quiz
13 Videos
ML-Modelle definieren4m
Einführung in das Dataset "Natality"6m
Einführung in Verlustfunktionen6m
Gradientenverfahren5m
Fehlerbehebung bei einer Verlustkurve2m
Probleme mit ML-Modellen6m
Lab: Einführung in TensorFlow Playground6m
Lab: TensorFlow Playground für Fortgeschrittene3m
Lab: Mit neuronalen Netzwerken arbeiten6m
Fehlerbehebung bei einer Verlustkurve1m
Leistungsmesswerte3m
Wahrheitsmatrix5m
1 praktische Übung
Modul-Quiz6m
3 Stunden zum Abschließen

Generalisierung und Stichprobenerhebung

9 Videos (Gesamt 64 min), 3 Quiz
9 Videos
Generalisierung und ML-Modelle6m
Wann das Modelltraining beendet werden sollte5m
Wiederholbare Beispiele in BigQuery erstellen6m
Demo: Datasets in BigQuery aufteilen8m
Einführung in das Lab1m
Lösungsübersicht für das Lab9m
Einführung in das Lab2m
Lösungsübersicht für das Lab23m
1 praktische Übung
Modul-Quiz12m
3 Minuten zum Abschließen

Zusammenfassung

1 Video (Gesamt 3 min)

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Über die Spezialisierung Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch

Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Was sind die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum darf keine dieser Phasen übersprungen werden? Warum sind neuronale Netze gerade so beliebt? Wie können Sie ein Projekt für betreutes Lernen gestalten und mithilfe des Gradientenverfahrens und sinnvoll erstellten Datasets eine gute, generalisierbare Lösung finden? In diesem Kurs lernen Sie, verteilte Modelle für ML zu schreiben, die in TensorFlow skaliert werden, das Training dieser Modelle horizontal zu skalieren und leistungsstarke Vorhersagen zu erstellen. Wir gehen darauf ein, wie Sie Rohdaten so in Merkmale umwandeln, dass ML wichtige Eigenschaften dieser Daten erlernen kann und menschliche Einblicke in das Problem zulässt. Schließlich lernen Sie, die richtige Mischung aus Parametern zu verwenden, um präzise und generalisierte Modelle zu erstellen, und Sie erhalten eine Einführung in die Theorie zum Lösen bestimmter Arten von ML-Problemen. Auf diese Weise gewinnen Sie ein umfassendes Verständnis von ML. Zuerst erstellen Sie eine auf ML ausgerichtete Strategie. Dann fahren Sie mit Modelltraining, Optimierung und Produktentwicklung fort. Hierbei helfen Ihnen praxisorientierte Labs der Google Cloud Platform. >>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch

Häufig gestellte Fragen

  • Ja, Sie können eine Vorschau des ersten Videos und den Lehrplan ansehen, bevor Sie sich anmelden. Sie müssen den Kurs kaufen, um Zugriff auf die Inhalte zu erhalten, die nicht in der Vorschau inbegriffen sind.

  • Wenn Sie sich vor dem Startdatum der ersten Kurseinheit anmelden, haben Sie Zugriff auf alle Vortragsvideos und Texte für den Kurs. Sobald die erste Kurseinheit beginnt, können Sie Aufgaben einreichen.

  • Sobald Sie sich anmelden und Ihre Kurseinheit beginnt, haben Sie Zugriff auf alle Videos und andere Ressourcen, einschließlich der Texte und des Kurs-Diskussionsforums. Sie können praktische Aufgaben ansehen und einreichen und erforderliche bewertete Aufgaben abschließen, um eine Bewertung und ein Kurszertifikat zu erhalten.

  • Wenn Sie den Kurs erfolgreich abschließen, wird der Seite „Errungenschaften“ Ihr elektronisches Kurszertifikat hinzugefügt – von dort können Sie Ihr Kurszertifikat ausdrucken oder es zu Ihrem LinkedIn-Profil hinzufügen.

  • Dieser Kurs ist einer der wenigen auf Coursera angebotenen Kurse, die derzeit ausschließlich für Kursteilnehmer zugänglich sind, die bezahlt oder finanzielle Unterstützung erhalten haben, wenn diese verfügbar ist.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..