Über diesen Kurs

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 9 Stunden zum Abschließen

Empfohlen: 10 hours/week...

Französisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 9 Stunden zum Abschließen

Empfohlen: 10 hours/week...

Französisch

Untertitel: Französisch, Portugiesisch (Brasilien), Deutsch, Englisch, Spanisch, Japanisch...

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
4 Minuten zum Abschließen

Introduction

1 Video (Gesamt 4 min)
1 Video
1 Stunde zum Abschließen

Le machine learning en pratique

10 Videos (Gesamt 62 min), 1 Quiz
10 Videos
Apprentissage supervisé5m
Régression et classification11m
Bref historique du ML : régression linéaire7m
Bref historique du ML : perceptron5m
Bref historique du ML : réseaux de neurones7m
Bref historique du ML : arbres de décision5m
Bref historique du ML : méthodes à noyau4m
Bref historique du ML : forêts d'arbres décisionnels4m
Bref historique du ML : réseaux de neurones modernes8m
1 praktische Übung
Quiz du module6m
1 Stunde zum Abschließen

Optimisation

13 Videos (Gesamt 61 min), 1 Quiz
13 Videos
Définir des modèles de ML4m
Présentation de l'ensemble de données "natality"6m
Présentation des fonctions de perte6m
Descente de gradient5m
Résoudre des problèmes relatifs aux courbes de perte2m
Pièges relatifs aux modèles de ML6m
Atelier : Présentation de TensorFlow Playground6m
Atelier : TensorFlow Playground (niveau avancé)3m
Atelier : Utilisation des réseaux de neurones6m
Résoudre des problèmes relatifs aux courbes de perte1m
Statistiques de performances3m
Matrice de confusion5m
1 praktische Übung
Quiz du module6m
3 Stunden zum Abschließen

Généralisation et échantillonnage

9 Videos (Gesamt 64 min), 3 Quiz
9 Videos
Généralisation et modèles de ML6m
Comment déterminer le bon moment pour arrêter l'entraînement d'un modèle ?5m
Créer des échantillons reproductibles dans BigQuery6m
Démonstration : Fractionnement d'ensembles de données dans BigQuery8m
Présentation de l'atelier1m
Explication de l'atelier9m
Présentation de l'atelier2m
Explication de l'atelier23m
1 praktische Übung
Questionnaire du module12m
3 Minuten zum Abschließen

Résumé

1 Video (Gesamt 3 min)

Über Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Über den Spezialisierung Machine Learning with TensorFlow on Google Cloud Platform en Français

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Quelles sont les cinq phases permettant de traiter un cas d'utilisation à l'aide du machine learning, et pourquoi chaque étape est-elle essentielle ? Pourquoi les réseaux de neurones sont-ils désormais si courants ? Comment définir un problème d'apprentissage supervisé et trouver une solution adaptée et généralisable à l'aide de la descente de gradient et d'une méthode pertinente de création d'ensembles de données ? Apprenez à créer des modèles de machine learning distribués qui pourront évoluer dans TensorFlow, à adapter l'entraînement de ces modèles pour bénéficier d'une évolutivité horizontale et à obtenir des prédictions très performantes. Convertissez les données brutes en caractéristiques de sorte que les processus de ML soient en mesure d'identifier les propriétés importantes dans les données et générez des insights qui ont du sens en rapport avec la problématique. Enfin, découvrez comment intégrer à la fois la combinaison de paramètres permettant d'obtenir des modèles précis et généralisés, et une connaissance de la théorie indispensable pour résoudre des types spécifiques de problèmes de ML. Vous expérimenterez le ML de bout en bout en commençant par créer une stratégie centrée sur le ML, puis en progressant dans le processus d'entraînement, d'optimisation et de production de modèles grâce à des ateliers pratiques faisant appel à Google Cloud Platform. >>> En vous inscrivant à cette spécialisation vous acceptez les conditions d'utilisation de Qwiklabs décrites dans la FAQ et disponibles à l'adresse: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform en Français

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..