Zurück zu Mathematics for Machine Learning: Linear Algebra

Sterne

10,388 Bewertungen

•

2,078 Bewertungen

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

PL

25. Aug. 2018

Great way to learn about applied Linear Algebra. Should be fairly easy if you have any background with linear algebra, but looks at concepts through the scope of geometric application, which is fresh.

CS

31. März 2018

Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.

Filtern nach:

von Thuy T N

•7. Aug. 2020

This is my first encounter with Linear Algebra and surely the course has been extremely helpful beginner-friendly. I recommend investing in practical mathematics courses as this specialization if you are new to machine learning field. You will be equipped with enough math background and should feel confident to enter more technical machine learning/deep learning courses.

A truly fundamental stepping stone!

von Joseph F

•20. Juni 2019

This course is perfect for many including those, like myself, who haven't seen this for 20+ years. I can imagine that it would be helpful to have, at least, a proclivity towards programming if you do not have familiarity with a programming language (at least course comments tend to reflect this).

For those experienced with coding, no difficulty will be encountered, as focus here is trivial (numpy libs).

von Digeesh J

•21. Mai 2020

This course is good for everyone, as rather than diving deep in the paper pen model, the intuition is taught. For those who already know Linear Algebra, it is best to take this course to understand, what you are writing and what each formulae is doing. For those who dont know anything about Linear Algebra, but is interested in Machine Learning, do this course to atleast have the intuition behind it.

von Sertan A

•12. Juli 2020

It's a very fundamental necessity for getting a hold on vectors and functions within a big programs. I have finished Mr. David Dye's part and he is an extraordinary teacher! I know Mr. Samuel Cooper from the calculus course and I assume his course will be quite awesome as well!! Thank you for making this available for people who need to upgrade their understanding, I respect this global mission!!!

von Mohiddin S

•1. Mai 2020

I am very grateful to the in structures and the platform providers who designed the the course to enrich the knowledge of mathematics in good manor. From this course I learned a lot. Being a mathematician I feel that there is a need to change form traditional teaching to technological oriented teaching. This course helped me in finding such a path.

Thanking you

regards

Dr.Shaik Mohiddin Shaw

von Edisson A

•29. Apr. 2020

Great course as a starter to understand the basis of linear algebra in machine learning. I had already taken a course of linear algebra as an undergrad but this course really opened my view of the applications and importance of some concepts I understood in a merely abstract way. The instructors are not only excellent in their explanations but you can also feel their interest for the subject.

von Lisa M

•7. Apr. 2018

This was a fantastic course. I'm new to linear algebra, so it was bit intimidating even signing up (!) - but the lecturers were really, really good about explaining all concepts from the ground up so it was always possible to visualize and extrapolate from solid foundations. For me it was a stretch each week, but in a good way: very challenging, but achievable with enough planning and effort.

von Wasif S

•3. Aug. 2020

This course for me was meant to be a habit-refiner but ended up being thinking of more into the depths of the world around. Very good course. The quiz & assignments are really good. Although some of the details are missing from particular sections, I think it will grow over time. As a Machine Learner's intro to perspective, this is really been a decent exercise to flex yourself. Goodluck.

von Amanda A

•26. Mai 2021

I absolutely loved this course - who would have thought math could be so fascinating! The lecturers were really engaging and passionate about the subject, which made the videos a pleasure to watch. This is not an area that I previously had any background in, but I found the lectures easy to understand with the way they were presented and explained. Looking forward to the next module!

von Ying T

•9. März 2018

An awesome course with high quality video lectures!! I will recommend this course to anyone who's looking for a refresher or quick pick-up on linear algebra. The homework's compatible with the materials and is quite interesting. The lecturer also did a good job on explaining critical concepts with easy but good examples. I'm looking forward to more similar courses from Imperial College.

von Jayant V

•29. März 2018

I have taken a course on linear algebra during my graduate program and must admit that it was not one of my more comfortable ones! Coming back to this course online, it really did help me get a much better understanding of concepts like dimensionality, basis, eigen values and eigen vectors. I intend to go over the lectures at least a few more times to be sure I have understood it well.

von SHOUNAK B

•12. Juli 2020

I personally loved this course as it changed my outlook and perspective towards Mathematics in computing and as a whole. I really enjoyed taking this course. It got me into some difficult assignments but the joy of solving it after lots of brainstorming and discussing with peers was awesome experience. I look forward towards developing myself and gaining knowledge with these courses.

von Stefan R

•28. Apr. 2020

It is usefull and good course. It does require at least some familiarity with the concept or otherwise you will spend hours trying to understand how things happen, but lecturers have overall given great insights in how things work and tried to simpliify as much as possible.

Maybe would be usefull for course creator to add some optional basics tests on the topic, for total beginers.

von Mert A D

•23. Feb. 2021

I had no prior knowledge of this course. I knew about mathematical narratives, but it was certainly very instructive for me in the ways of interpretation and application contained in his narrative in the course. It is also a basic building block in Machine Learning. I'll definitely sign up for a continuation of the course. I recommend it to everyone. I hope you enjoy it is in you.

von Huy M

•11. März 2019

I've only done half of the course but I already know this course is one of the best on Coursera! Complex concepts in mathematics are broken down into simple terms. The professor also clearly stated what those concepts are used for in practical, which certainly help learners have a clear idea of why they are learning this course. Very exciting every time I click onto new lessons!

von Juan C D S

•19. Apr. 2021

In general is a great course. The geometric explanations are, in my opinion, excellent and you have different tools to develop your knowledge. I do believe that you can get an understanding of linear algebra from this course even if you have never seen the subject before, but you will most likely have to study seriously, taking notes and considering this as a college course.

von Hardik S

•20. Juni 2020

Not being from a Mathematics Background, one surely need best tutor I guess for understanding Mathematics that's required in Machine Learning/ Data Science. Both the tutor Sam Cooper and David Dye amazingly Explained the topics and I'm happy to have completed the Linear Algerbra Course and now moving towards other part of the course i.e Course 2 Multivariate Calculus.

von Ramon M T

•20. Aug. 2019

Excellent Course, I remembered the linear algebra that I saw in school more than 26 years ago (I studied applied mathematics and switched to Actuaria), but now with examples related to DataScience.

As observation.

For someone who has not programmed in some language the exercises can be challenging, but they are always very intuitive if the example steps are performed.

von RAMALINGAM M

•27. Dez. 2021

Interesting and intuitive course, presented by highly articulate and passionate experts. The focus is building an intuitive understanding of the mathematical concepts which allow us to come away with some insight and understanding the power of the Eigen theory, specially by exploring the concept of Google’s famous PageRank algorithm for presenting web search results.

von Eric H

•13. Nov. 2020

Getting back into math after taking about 12 years off, and this was a great dive back in. I got a lot out of working the math out by hand for a few examples. There were some gaps in my understanding (when calculating eigenvectors, we need to solve for x1 and x2, but they don't have to be 0). Overall it was a great course and I'll be referring to my notes regularly!

von Badri A

•1. Mai 2020

At first, I was kinda of afraid of Math in general and Linear algebra in particular, but after taking this course, I am satisfied with it.

A special thanks to the instructors and all the people behind this course, for making thing simple and comprehensible, and at the same time, hit the target. Looking forward to keep learning and carry on with this specialization !

von Callum M

•9. Juni 2021

I thoroughly enjoyed this and made studying Machine Learning at the side of this a lot less of a guessing game when it came to the maths. The quizzes and programming assignments are tough but once you figure them out you feel confident with your understanding going forward, so I guess they do the job! Both lecturers are brilliant too - really clean presentations.

von RHEA R B

•20. Mai 2020

This course was very informative . Having learnt to solve most of this problems by hand in under-graduation , this course helped me to code these hand-worked problems . Additionally I was able to understand and visualize what the problems actually do . I highly recommend this course for anyone who is looking to learn or advance their career in machine learning .

von Art P

•8. Juni 2018

This course was of high quality, was very helpful in explaining some key concepts and I appreciated the instructors energy and humor. My only complaint about the course is that some of the quizzes and homework assignments felt significantly more challenging than what was covered in the lessons; however, the discussion forums proved helpful in closing this gap.

von Alina I H

•18. Nov. 2020

Really good overview and while explained perfectly by the instructors (using different media that would have been amazing to have back in school...) still challenging enough to get the brain cells running. Fun to do, yet one should take time and really concentrate. Thanks for this amazing opportunity! I'm sure this knowledge will really help me along the way.

- Google Data Analyst
- Google-Projektmanagement
- Google-UX-Design
- Google IT-Support
- IBM Datenverarbeitung
- IBM Data Analyst
- IBM-Datenanalyse mit Excel und R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack-Cloudentwickler
- Facebook Social Media Marketing
- Facebook Marketinganalyse
- Salesforce Sales Development Representative
- Sales Operations in Salesforce
- Buchhaltung mit Intuit
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Architect
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Data Engineer
- Eine Karriere starten
- Auf eine Zertifizierung vorbereiten
- Bringen Sie Ihre Karriere voran

- Kostenlose Kurse
- Lernen Sie eine Sprache
- Python
- Java
- Webdesign
- SQL
- Gratiskurse
- Microsoft Excel
- Projektmanagement
- Cybersicherheit
- Personalwesen
- Kostenlose Kurse in Datenverarbeitung
- Englisch sprechen
- Inhalte verfassen
- Full-Stack-Webentwicklung
- Künstliche Intelligenz
- C-Programmierung
- Kommunikationsfähigkeiten
- Blockchain
- Alle Kurse anzeigen

- Kompetenzen für Datenwissenschaftsteams
- Datengestützte Entscheidungsfindung
- Kompetenzen im Bereich Software Engineering
- Soft Skills für Ingenieurteams
- Management-Kompetenzen
- Marketing-Kompetenzen
- Kompetenzen für Vertriebsteams
- Produktmanager-Kompetenzen
- Kompetenzen im Bereich Finanzen
- Beliebte Kurse in Datenverarbeitung im Vereinigten Königreich
- Beliebte Technologiekurse in Deutschland
- Beliebte Zertifizierungen für Cybersicherheit
- Beliebte IT-Zertifizierungen
- Beliebte SQL-Zertifizierungen
- Karriereleitfaden für Marketing-Manager
- Karriereleitfaden für Projektmanager
- Python-Programmierkenntnisse
- Karriereleitfaden für Webentwickler
- Datenanalysefähigkeiten
- Kompetenzen für UX-Designer

- MasterTrack® Certificates
- Zertifikate über berufliche Qualifikation
- Universitätszertifikate
- MBA- und Business-Abschlüsse
- Abschlüsse in Data Science
- Abschlüsse in Informatik
- Abschlüsse in Datenanalyse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Sozialwissenschaften
- Management-Abschlüsse
- Abschlüsse von europäischen Spitzenuniversitäten
- Masterabschlüsse
- Bachelorabschlüsse
- Studiengänge mit Performance Pathway
- BSc-Kurse
- Was ist ein Bachelorabschluss?
- Wie lange dauert ein Masterstudium?
- Lohnt sich ein Online-MBA?
- 7 Finanzierungsmöglichkeiten für die Graduate School
- Alle Zertifikate anzeigen