Zurück zu Mathematics for Machine Learning: Linear Algebra

Sterne

10,261 Bewertungen

•

2,060 Bewertungen

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

EC

9. Sep. 2019

Excellent review of Linear Algebra even for those who have taken it at school. Handwriting of the first instructor wasn't always legible, but wasn't too bad. Second instructor's handwriting is better.

HE

8. Aug. 2021

the instrutors were too good and their explination for the concepts was to the point and it made me realize things in linear algebra I didn't know before although I studied it in school of engineering

Filtern nach:

von Ollie D

•9. Juli 2020

For someone having already graduated with a degree in Mathematics, the mathematical concepts centred around this course were easy to understand, but then applying this knowledge in to code was challenging. Which I was expecting it to be given my lack of experience with python and jupyter notes. A worthwhile course for anyone looking in to data science.

von David P

•10. Juli 2018

Great content, lecture videos are brilliant. I would make one suggestion; it would be great to have more examples or even recommend text books that we as learners can download or purchase, this will assist those who wants to learn these techniques in practical examples. Other than that I have learned alot and will continue using coursera, good job guys

von Ahmed R

•22. Apr. 2018

This is a very good introduction and review of Linear Algebra. The particular highlights are the use of geometric perspectives to give intuition rather than just labouring through the mathematics. I also learned where I need to learn more in order. Overall will recommend either as a review or a stepping stone to learning more about Linear Algebra.

von Kohinoor G

•24. Apr. 2018

One of the best Linear Algebra [LA] courses for beginners/novices. It takes away the drudgery of algebra and formulae and tries to explain the "essence" of LA. This is by no means comprehensive LA course - but good enough for people who are fed up with "this is how to calculate the Eigen vector/determinant/<insert pet peeve>" mode of teaching LA.

von Kerr F

•23. Juni 2020

Brilliant course which helped me to re-learn/learn linear algebra methods for machine learning! The course instructor videos, course structure, worked examples and assessments were all extremely useful and allowed me to achieve my learning goals. I would recommend this course to anyone (but would maybe first suggest brushing up on basic python).

von Jonathan S Y P

•11. Apr. 2020

Me parece un curso muy bueno, es básico pero la verdad hay que practicar mucho haciendo ejercicios y no conformarse únicamente con la información de los vídeos, si no, buscar otras fuentes para complementar. Para ser básico fue un desafío porque hay problemas que aparecen en los exámenes que requieren de mucho análisis. Vale la pena; me gustó!

von Alin A

•25. März 2021

If you are completely new to the subject you may find the course a bit challenging at times but after taking several traditional courses on the subject I can say that by far this is the best course on linear algebra I ever took! Well balanced, straight forward, and great intuitive approach, as well as very neat production! Highly recommended!

von Kisan T

•9. März 2020

This course has helped me to understand the basics of linear algebra and it's application in computer science. I was aware of mathematical calculations of the linear algebra, but I did not know reason and meaning of those calculations. I am grateful to Imperial College London and Coursera team for giving me opportunity to take this course.

von Mrinal M

•27. Juni 2021

It is a brilliant course, both the instructors did a great job in making is clear and interesting. This course makes the subject really interesting to learn and gives you really good intuition about operations using linear algebra. The thing I loved about the course is that, it covers only parts of linear algebra that is useful for ML.

von Divyaman S R

•31. Okt. 2020

Excellent course with the just right amount of detail to expose beginners to the concepts of linear algebra. I look forward to other courses from ICL in coursera in the filed of mathematics, data science and machine learning.

Thanks to this course, I am in love with linear algebra and am continuing further self-study on this subject.

von Duc D

•22. Sep. 2019

Awesome content and very clear lectures. Would be great to have links to more in-depth explanations of certain unexplained assumptions. For instance, it's unclear how the characteristic equation comes about (by assuming that the characteristic matrix does not have an inverse) and also why the page rank matrix is setup the way it is.

von 谢仑辰

•27. Feb. 2019

I really appreciate staff of ICL's effort to bring us such an intuitive and straightforward course. It's totally different from those linear algebra courses I've received in China. From your idea on explaining this course on space and transformation, I started to build a strong foundation about linear algebra, and machine learning.

von Gabriel W

•23. Mai 2020

I did the 3 specialization lessons "Mathematics for Machine Learning" (Linear Algebra, Multivariate Calculus, PCA). I really had a lot of fun and learnings in the first one (5 stars for Linear Algebra): David Dye is an increadible teacher. Thank you for your enthousiastic Knowledge Transmission: Mathematics are very cool with you!

von Niju M N

•9. Apr. 2020

This course lays the groundwork for the Algebra required in ML. The basics are covered really well.There are quizzes and assignments to strengthen the ideas learnt in the course.At times felt the assignments are very easy .It can be used to brush up the basic Algebra or learn from Zero. The instructor explains every thing clearly

von Paul K M

•9. Okt. 2019

This course gives a good overview of linear algebra using python numpy arrays. It doesn't go super deep into the topic, but I wouldn't call it superficial. It requires you to do some basic vector and matrix algebra by hand, build agorithms to do some of those calculations, and introduces some numpy methods for those operations.

von Michelle W

•3. Juli 2018

Excellent course. I have never taken a linear algebra course before, so it took me longer to complete this as I had to learn the basics to follow the material in this course. The course is designed as a review of linear algebra, but if you are motivated and have time, it's possible to complete without having had linear algebra.

von Alex H

•9. Feb. 2020

This is exactly what I wanted from an online course! I took linear algebra at university decades ago, but made the mistake of learning just enough to pass the next test. The lectures in this course laid out and solidified concepts for me which were previously abstract. The presenters were clear, concise and, I daresay, fun!

von Benjamin E

•24. Feb. 2020

This is a good course that allows you to develop a high and low level understanding of linear algebra...unlike a certain university professor I had who made us do 5x5 matrix transformations by hand. I highly recommend doing outside reading alongside the course to expand your knowledge, especially regarding the coding aspects.

von Mthandeni M

•14. Apr. 2020

Great balance between Mathematical rigor and Computer Science applications. This course is deliberately not easy to ensure you leave with a strong intuition behind the Mathematics of Machine Learning. Python exercises brings this cause alive. It has given me the confidence to continue with my Machine Engineering journey.

von Shubham D

•9. Mai 2018

Amazing course.Do not let the easy content distract you from the fact that this is one of the best/well taught MOOCs on Coursera.These professors are experts at helping student develop an intuition for mathematics.Way different from what was taught in my school/university and also much more useful in a practical sense.

von Andrei Z

•3. Jan. 2021

Perfect course for newcomers that want to understand basic concepts of Linear Algebra. Very beginner-friendly, especially programming assignments where you get full guidance with the task. Would certainly reccoment to anybody who has interest in this subject, but was too afraid to begin studying it out of complexity.

von AVADH P

•3. Okt. 2018

The course and the content is quite fruitful for anyone who wants to go ahead in the area of Machine Learning. The course instructor gives a detailed understanding of each topic and insight of the methods of vector calculus and linear algebra. For building the basic fundamentals of ML, this course is must for anyone.

von Christos P

•2. Juli 2018

It was honestly great. The first two weeks didn't have much new for someone who'd already taken Linear Algebra, but the last three weeks were very informational. It really helped me understand the concepts geometrically/spatially in ways I hadn't seen before when I had taken general linear algebra at my university.

- Google Data Analyst
- Google-Projektmanagement
- Google-UX-Design
- Google IT-Support
- IBM Datenverarbeitung
- IBM Data Analyst
- IBM-Datenanalyse mit Excel und R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack-Cloudentwickler
- Facebook Social Media Marketing
- Facebook Marketinganalyse
- Salesforce Sales Development Representative
- Sales Operations in Salesforce
- Buchhaltung mit Intuit
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Architect
- Vorbereitung auf die Google Cloud-Zertifizierung: Cloud Data Engineer
- Eine Karriere starten
- Auf eine Zertifizierung vorbereiten
- Bringen Sie Ihre Karriere voran

- Kostenlose Kurse
- Lernen Sie eine Sprache
- Python
- Java
- Webdesign
- SQL
- Gratiskurse
- Microsoft Excel
- Projektmanagement
- Cybersicherheit
- Personalwesen
- Kostenlose Kurse in Datenverarbeitung
- Englisch sprechen
- Inhalte verfassen
- Full-Stack-Webentwicklung
- Künstliche Intelligenz
- C-Programmierung
- Kommunikationsfähigkeiten
- Blockchain
- Alle Kurse anzeigen

- Kompetenzen für Datenwissenschaftsteams
- Datengestützte Entscheidungsfindung
- Kompetenzen im Bereich Software Engineering
- Soft Skills für Ingenieurteams
- Management-Kompetenzen
- Marketing-Kompetenzen
- Kompetenzen für Vertriebsteams
- Produktmanager-Kompetenzen
- Kompetenzen im Bereich Finanzen
- Beliebte Kurse in Datenverarbeitung im Vereinigten Königreich
- Beliebte Technologiekurse in Deutschland
- Beliebte Zertifizierungen für Cybersicherheit
- Beliebte IT-Zertifizierungen
- Beliebte SQL-Zertifizierungen
- Karriereleitfaden für Marketing-Manager
- Karriereleitfaden für Projektmanager
- Python-Programmierkenntnisse
- Karriereleitfaden für Webentwickler
- Datenanalysefähigkeiten
- Kompetenzen für UX-Designer

- MasterTrack® Certificates
- Zertifikate über berufliche Qualifikation
- Universitätszertifikate
- MBA- und Business-Abschlüsse
- Abschlüsse in Data Science
- Abschlüsse in Informatik
- Abschlüsse in Datenanalyse
- Abschlüsse im Gesundheitswesen
- Abschlüsse in Sozialwissenschaften
- Management-Abschlüsse
- Abschlüsse von europäischen Spitzenuniversitäten
- Masterabschlüsse
- Bachelorabschlüsse
- Studiengänge mit Performance Pathway
- BSc-Kurse
- Was ist ein Bachelorabschluss?
- Wie lange dauert ein Masterstudium?
- Lohnt sich ein Online-MBA?
- 7 Finanzierungsmöglichkeiten für die Graduate School
- Alle Zertifikate anzeigen