Chevron Left
Zurück zu Линейная регрессия

Learner Reviews & Feedback for Линейная регрессия by Saint Petersburg State University

Über den Kurs

В этом курсе мы разберем основные методы описания взаимосвязей между количественными признаками. Если корреляционный анализ позволяет количественно оценить силу и направление связи между двумя величинами, то построение регрессионных моделей дает более широкие возможности. При помощи регрессионного анализа можно количественно описывать поведение изучаемых величин в зависимости от переменных-предикторов и получать предсказания на новых данных. Вы узнаете, как строить простые и множественные линейные модели с использованием языка R. У всякого метода есть свои ограничения, поэтому мы поможем вам разобраться, в каких ситуациях можно, а в каких нельзя применять линейную регрессию, и научим вас методам диагностики подобранных моделей. Специальное место в курсе отводится глубинной анатомии регрессионного анализа: вы освоите операции с матрицами, которые лежат в основе линейной регрессии, чтобы получить возможность разбираться в более сложных разновидностях линейных моделей. Если вы сталкиваетесь с необходимостью поиска и описания взаимосвязей между теми или иными явлениями, которые могут быть измерены количественно, тогда этот курс - хорошая возможность понять, как устроены простая и множественная линейная регрессия, узнать о возможностях и ограничениях этих методов. Курс рассчитан на тех, кто уже знаком с базовыми приемами анализа данных с использованием языка R и с созданием простейших .html документов при помощи rmarkdown и knitr....
Filtern nach:

1 - 2 of 2 Reviews for Линейная регрессия

von Yevhenii S

Jan 29, 2019

Хороший курс! Одно из лучший объяснений линейной регресси. А по полноте материала в целом, лучшее, что можно найти.

von Сокол С А

Jul 02, 2019

Как всегда, благодарю СПбГУ и преподавателей за такой качественное и увлекательное преподавание R