Über diesen Kurs
3,199

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Anfänger“

Ca. 12 Stunden zum Abschließen

Empfohlen: This is Course 2 in a 4-course specialization. Estimated workload: 15-hours per week....

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Anfänger“

Ca. 12 Stunden zum Abschließen

Empfohlen: This is Course 2 in a 4-course specialization. Estimated workload: 15-hours per week....

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
3 Stunden zum Abschließen

Integer Foundations

Building upon the foundation of cryptography, this module focuses on the mathematical foundation including the use of prime numbers, modular arithmetic, understanding multiplicative inverses, and extending the Euclidean Algorithm. After completing this module you will be able to understand some of the fundamental math requirement used in cryptographic algorithms. You will also have a working knowledge of some of their applications....
5 Videos (Gesamt 60 min), 10 Lektüren, 2 Quiz
5 Videos
Divisibility, Primes, GCD14m
Modular Arithmetic15m
Multiplicative Inverses12m
Extended Euclidean Algorithm13m
10 Lektüren
Course Introduction10m
Lecture Slides - Divisibility, Primes, GCD10m
Video - Adam Spencer: Why I fell in love with monster prime numbers15m
L16: Additional Reference Material10m
Lecture Slides - Modular Arithmetic10m
L17: Additional Reference Material10m
Lecture Slides - Multiplicative Inverses10m
L18: Additional Reference Material10m
Lecture Slides - Extended Euclidean Algorithm10m
L19: Additional Reference Material10m
2 praktische Übungen
Practice Assessment - Integer Foundation18m
Graded Assessment - Integer Foundation16m
Woche
2
3 Stunden zum Abschließen

Modular Exponentiation

A more in-depth understanding of modular exponentiation is crucial to understanding cryptographic mathematics. In this module, we will cover the square-and-multiply method, Eulier's Totient Theorem and Function, and demonstrate the use of discrete logarithms. After completing this module you will be able to understand some of the fundamental math requirement for cryptographic algorithms. You will also have a working knowledge of some of their applications....
4 Videos (Gesamt 51 min), 9 Lektüren, 2 Quiz
4 Videos
Euler's Totient Theorem16m
Eulers Totient Function12m
Discrete Logarithms15m
9 Lektüren
Lecture Slides - Square-and-Multiply10m
Video - Modular exponentiation made easy10m
L20: Additional Reference Material10m
Lecture Slide - Euler's Totient Theorem10m
L21: Additional Reference Material10m
Lecture Slide - Eulers Totient Function10m
L22: Additional Reference Material10m
Lecture Slide - Discrete Logarithms10m
L23: Additional Reference Material10m
2 praktische Übungen
Practice Assessment - Modular Exponentiation12m
Graded Assessment - Modular Exponentiation20m
Woche
3
3 Stunden zum Abschließen

Chinese Remainder Theorem

The modules builds upon the prior mathematical foundations to explore the conversion of integers and Chinese Remainder Theorem expression, as well as the capabilities and limitation of these expressions. After completing this module, you will be able to understand the concepts of Chinese Remainder Theorem and its usage in cryptography....
3 Videos (Gesamt 25 min), 5 Lektüren, 2 Quiz
3 Videos
Moduli Restrictions, CRT-to-Integer Conversions10m
CRT Capabilities and Limitations8m
5 Lektüren
Lecture Slide - CRT Concepts, Integer-to-CRT Conversions30m
L24: Additional Reference Material10m
Lecture Slide - Moduli Restrictions, CRT-to-Integer Conversions30m
Lecture Slide - Moduli Restrictions, CRT-to-Integer Conversions30m
Video - How they found the World's Biggest Prime Number - Numberphile12m
2 praktische Übungen
Practice Assessment - Chinese Remainder Theorem12m
Graded Assessment - Chinese Remainder Theorem20m
Woche
4
3 Stunden zum Abschließen

Primality Testing

Finally we will close out this course with a module on Trial Division, Fermat Theorem, and the Miller-Rabin Algorithm. After completing this module, you will understand how to test for an equality or set of equalities that hold true for prime values, then check whether or not they hold for a number that we want to test for primality....
3 Videos (Gesamt 36 min), 8 Lektüren, 3 Quiz
3 Videos
Fermat's Primality9m
Miller-Rabin13m
8 Lektüren
Lecture Slide - Trial Division10m
L27: Additional Reference Material10m
Lecture Slide - Fermat's Primality10m
L28: Additional Reference Material10m
Lecture Slide - Miller-Rabin10m
Video - James Lyne: Cryptography and the power of randomness10m
L29: Additional Reference Material10m
The Science of Encryption10m
3 praktische Übungen
Practice Assessment - Primality Testing12m
Graded Assessment - Primality Testing20m
Course Project8m

Dozenten

Avatar

William Bahn

Lecturer
Computer Science
Avatar

Richard White

Assistant Research Professor
Computer Science
Avatar

Sang-Yoon Chang

Assistant Professor
Computer Science

Über University of Colorado System

The University of Colorado is a recognized leader in higher education on the national and global stage. We collaborate to meet the diverse needs of our students and communities. We promote innovation, encourage discovery and support the extension of knowledge in ways unique to the state of Colorado and beyond....

Über die Spezialisierung Introduction to Applied Cryptography

Cryptography is an essential component of cybersecurity. The need to protect sensitive information and ensure the integrity of industrial control processes has placed a premium on cybersecurity skills in today’s information technology market. Demand for cybersecurity jobs is expected to rise 6 million globally by 2019, with a projected shortfall of 1.5 million, according to Symantec, the world’s largest security software vendor. According to Forbes, the cybersecurity market is expected to grow from $75 billion in 2015 to $170 billion by 2020. In this specialization, students will learn basic security issues in computer communications, classical cryptographic algorithms, symmetric-key cryptography, public-key cryptography, authentication, and digital signatures. These topics should prove useful to those who are new to cybersecurity, and those with some experience....
Introduction to Applied Cryptography

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..