Über diesen Kurs

392,424 kürzliche Aufrufe

Karriereergebnisse der Lernenden

40%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

44%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

26%

erhalten Sie eine Gehaltserhöhung oder Beförderung
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Anfänger“
Ca. 29 Stunden zum Abschließen
Russisch
Untertitel: Russisch

Kompetenzen, die Sie erwerben

ScipyStatisticsPython ProgrammingNumpy

Karriereergebnisse der Lernenden

40%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

44%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

26%

erhalten Sie eine Gehaltserhöhung oder Beförderung
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Anfänger“
Ca. 29 Stunden zum Abschließen
Russisch
Untertitel: Russisch

von

Moscow Institute of Physics and Technology-Logo

Moscow Institute of Physics and Technology

Yandex-Logo

Yandex

E-Learning Development Fund-Logo

E-Learning Development Fund

Lehrplan - Was Sie in diesem Kurs lernen werden

InhaltsbewertungThumbs Up90%(90,177 Bewertungen)Info
Woche
1

Woche 1

8 Stunden zum Abschließen

Введение

8 Stunden zum Abschließen
19 Videos (Gesamt 115 min), 13 Lektüren, 7 Quiz
19 Videos
Как устроена специализация и зачем ее проходить3m
Как устроен этот курс и в чем его главная особенность1m
МФТИ1m
Что такое Python и почему мы выбрали именно его6m
Как установить Анаконду. Windows3m
Как установить Анаконду. Linux4m
Как установить Анаконду. Mac3m
Что такое ноутбуки и как ими пользоваться10m
Типы данных16m
Циклы, функции, генераторы, list comprehension13m
Чтение данных из файлов11m
Запись файлов, изменение файлов8m
Функции и их свойства6m
Предел и производная4m
Геометрический смысл производной2m
Производная сложной функции2m
Задача нахождения экстремума3m
Вторая производная и выпуклость5m
13 Lektüren
Формат специализации и получение сертификата2m
МФТИ10m
Немного о Yandex10m
Python FAQ10m
Forum&Chat10m
Инструкция: Как открыть ipython в актуальной версии Anaconda10m
Знакомство с IPython Notebook10m
Конспект30m
Типы данных (ipython notebook)10m
Чтение данных из файлов (ipython notebook)10m
Запись файлов, изменение файлов (ipython notebook)10m
Конспект30m
Конспект10m
6 praktische Übungen
Работа с IPython Notebook10m
Знакомство с Python10m
Работа с файлами в Python10m
Синтаксис Python10m
Функции и экстремумы10m
Производная и её применения10m
Woche
2

Woche 2

8 Stunden zum Abschließen

Библиотеки Python и линейная алгебра

8 Stunden zum Abschließen
14 Videos (Gesamt 97 min), 8 Lektüren, 10 Quiz
14 Videos
Pandas. Индексация и селекция13m
Первое знакомство NumPy, SciPy и Matplotlib16m
Решение оптимизационных задач в SciPy4m
Знакомство с линейной алгеброй5m
Векторные пространства3m
Линейная независимость6m
Операции в векторных пространствах6m
Зачем нужны матрицы?5m
Матричные операции7m
Ранг и определитель5m
Системы линейных уравнений4m
Особые виды матриц4m
Собственные числа и векторы3m
8 Lektüren
Pandas. DataFrame (ipython notebook)10m
Pandas. Индексация и селекция (ipython notebook)10m
Первое знакомство с Numpy, Scipy и Matplotlib (ipython notebook)10m
Оптимизация в Scipy (ipython notebook)10m
NumPy: векторы и операции над ними10m
Конспект30m
NumPy: матрицы и операции над ними10m
Конспект30m
9 praktische Übungen
Pandas10m
Numpy10m
Pandas, Numpy, Scipy, Matplotlib10m
Базовые понятия линейной алгебры10m
Линейная независимость и размерность10m
Векторные пространства и NumPy10m
Что можно делать с матрицами?10m
Разрешимость систем линейных уравнений и ранги10m
Матрицы и NumPy10m
Woche
3

Woche 3

6 Stunden zum Abschließen

Оптимизация и матричные разложения

6 Stunden zum Abschließen
12 Videos (Gesamt 47 min), 3 Lektüren, 7 Quiz
12 Videos
Применение градиента3m
Производная по направлению2m
Касательная плоскость и линейное приближение2m
Направление наискорейшего роста2m
Оптимизация негладких функций4m
Метод имитации отжига4m
Генетические алгоритмы и дифференциальная эволюция4m
Нелдер-Мид3m
Разложения матриц в произведение, сингулярное разложение3m
Приближение матрицей меньшего ранга5m
Связь сингулярного разложения и приближения матрицей меньшего ранга6m
3 Lektüren
Конспект30m
Конспект30m
Конспект30m
6 praktische Übungen
Частные производные10m
Градиент и его применения10m
Повторение: гладкость и градиентный спуск10m
Методы оптимизации в негладких задачах10m
Повторение линейной алгебры10m
Матричные разложения10m
Woche
4

Woche 4

6 Stunden zum Abschließen

Случайность

6 Stunden zum Abschließen
11 Videos (Gesamt 59 min), 7 Lektüren, 7 Quiz
11 Videos
Свойства вероятности3m
Условная вероятность2m
Дискретные случайные величины4m
Непрерывные случайные величины7m
Оценка распределения по выборке6m
Важные характеристики распределений6m
Важные статистики5m
Центральная предельная теорема5m
Доверительные интервалы6m
Бонусное видео6m
7 Lektüren
Работа со случайными величинами (ipython notebook)10m
Конспект30m
Оценка распределения по выборке (ipython notebook)10m
Конспект30m
Материалы к бонусному видео10m
Список литературы10m
Финальные титры10m
6 praktische Übungen
Вероятность10m
Случайные величины10m
Вероятность и случайные величины20m
Распределения, параметры и оценки10m
ЦПТ и доверительные интервалы10m
Статистики20m

Bewertungen

Top-Bewertungen von МАТЕМАТИКА И PYTHON ДЛЯ АНАЛИЗА ДАННЫХ

Alle Bewertungen anzeigen

Über den Spezialisierung Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Häufig gestellte Fragen

  • Der Zugang zu Vorlesungen und Aufgaben hängt von der Art Ihrer Anmeldung ab. Wenn Sie einen Kurs im Gastmodus belegen, können Sie die meisten Kursmaterialien kostenlos einsehen. Um auf benotete Aufgaben zuzugreifen und ein Zertifikat zu erhalten, müssen Sie während oder nach Ihrer Gastphase das Zertifikat erwerben. Wenn Sie die Gastoption nicht sehen:

    • Der Kurs bietet möglicherweise keine Gastoption an. Sie können stattdessen eine kostenlose Testversion ausprobieren oder finanzielle Unterstützung beantragen.
    • Der Kurs kann stattdessen "Vollständiger Kurs ohne Zertifikat" anbieten. Mit dieser Option können Sie alle Kursmaterialien einsehen, die erforderlichen Aufgaben einreichen und eine Endnote erhalten. Dies bedeutet auch, dass Sie kein Zertifikat erwerben können.
  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

  • Wenn Sie ein Abonnement abgeschlossen haben, erhalten Sie eine 7-tägige, kostenlose Testversion, die Sie gebührenfrei wieder kündigen können. Danach gewähren wir keine Rückerstattungen mehr, aber Sie können Ihr Abonnement jederzeit kündigen. Lesen Sie unsere vollständige Rückerstattungsrichtlinie.

  • Ja, Coursera bietet für Kursteilnehmer, die sich die Kursgebühr nicht leisten können, finanzielle Unterstützung an. Bewerben Sie sich dafür, indem Sie auf den Link für finanzielle Unterstützung links unter der Schaltfläche „Anmelden“ klicken. Sie werden zum Ausfüllen eines Antrags aufgefordert und werden bei Genehmigung benachrichtigt. Diesen Schritt müssen Sie für jeden Kurs der Spezialisierung ausführen, auch für das Abschlussprojekt. Mehr erfahren

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..