Chevron Left
Zurück zu Machine Learning: Clustering & Retrieval

Bewertung und Feedback des Lernenden für Machine Learning: Clustering & Retrieval von University of Washington

2,307 Bewertungen

Über den Kurs

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....



16. Jan. 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.


24. Aug. 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

Filtern nach:

26 - 50 von 381 Bewertungen für Machine Learning: Clustering & Retrieval

von Ferenc F P

25. Jan. 2018

von Stephen G

13. Aug. 2016

von Feng G

8. Aug. 2018

von Miguel P

13. Juli 2016

von Alessio D M

1. Aug. 2016

von Muhammad W K

22. Okt. 2019

von Christopher A

1. Okt. 2016

von Krishna K

20. Apr. 2018

von Muhammad H A

13. Aug. 2016

von Phuong N

7. Feb. 2018

von Renato R R

4. Jan. 2018

von Liling T

15. Aug. 2016

von Martin R

12. Dez. 2018

von Kumiko K

14. Aug. 2016

von Sally M

2. Jan. 2017

von Michael B

12. Juli 2016

von Vaidas A

29. Mai 2017

von Bhavesh G

12. Mai 2020

von Aditi R

25. Dez. 2016

von Marcio R

2. Sep. 2016

von Jafed E G

6. Juli 2019

von Mohamed A H

19. Juni 2019

von Alfred D

24. März 2018

von Atul A

25. Aug. 2017

von Samuel d Z

18. Juli 2017