Chevron Left
Zurück zu Machine Learning: Clustering & Retrieval

Bewertung und Feedback des Lernenden für Machine Learning: Clustering & Retrieval von University of Washington

2,307 Bewertungen

Über den Kurs

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....



16. Jan. 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.


24. Aug. 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

Filtern nach:

101 - 125 von 381 Bewertungen für Machine Learning: Clustering & Retrieval

von Cristian A G F

30. Dez. 2020

von Prasant K S

20. Dez. 2016

von João S

7. Aug. 2016

von Geoff B

14. Juli 2016

von Susree S M

14. Nov. 2018

von Viktor K

14. Mai 2021

von Gaston F

10. Okt. 2016

von Sayan B

5. Dez. 2019

von Suresh K P

21. Dez. 2017

von Gillian P

23. Juli 2017

von Neemesh J

28. Okt. 2019

von Etienne V

19. Feb. 2017

von Aakash S

18. Juni 2019

von Renato R S

27. Aug. 2016

von Noor A K

4. Juli 2020

von Yugandhar D

29. Okt. 2018

von Sathiraju E

3. März 2019

von Moises V

30. Okt. 2016

von Yi W

27. Sep. 2016

von Priyanshu R S

27. Nov. 2020

von austin

9. Aug. 2017

von Val V

8. Apr. 2021

von B P S

27. Mai 2020

von Venkateshwaralu S

7. Aug. 2016

von Jifu Z

22. Juli 2016