Chevron Left
Zurück zu Build, Train, and Deploy ML Pipelines using BERT

Bewertung und Feedback des Lernenden für Build, Train, and Deploy ML Pipelines using BERT von

114 Bewertungen

Über den Kurs

In the second course of the Practical Data Science Specialization, you will learn to automate a natural language processing task by building an end-to-end machine learning pipeline using Hugging Face’s highly-optimized implementation of the state-of-the-art BERT algorithm with Amazon SageMaker Pipelines. Your pipeline will first transform the dataset into BERT-readable features and store the features in the Amazon SageMaker Feature Store. It will then fine-tune a text classification model to the dataset using a Hugging Face pre-trained model, which has learned to understand the human language from millions of Wikipedia documents. Finally, your pipeline will evaluate the model’s accuracy and only deploy the model if the accuracy exceeds a given threshold. Practical data science is geared towards handling massive datasets that do not fit in your local hardware and could originate from multiple sources. One of the biggest benefits of developing and running data science projects in the cloud is the agility and elasticity that the cloud offers to scale up and out at a minimum cost. The Practical Data Science Specialization helps you develop the practical skills to effectively deploy your data science projects and overcome challenges at each step of the ML workflow using Amazon SageMaker. This Specialization is designed for data-focused developers, scientists, and analysts familiar with the Python and SQL programming languages and want to learn how to build, train, and deploy scalable, end-to-end ML pipelines - both automated and human-in-the-loop - in the AWS cloud....



5. Juli 2021

It is one of course with the exact content required for an working professional who is already working with AWS and want to leverage the benefits of sagemaker for their ML deployment tasks


27. Juli 2021

Simple to learn but there are lot of takeaways which helps any data scientist or a machine learning engineer!

Filtern nach:

1 - 24 von 24 Bewertungen für Build, Train, and Deploy ML Pipelines using BERT

von Pablo A B

5. Juli 2021

von Sneha L

6. Juli 2021

von Israel T

19. Juni 2021

von Mark P

13. Sep. 2021

von Magnus M

14. Juni 2021

von Aleksa B

2. Nov. 2021

von yugesh v

28. Juli 2021

von RLee

28. Juli 2022

von Janzaib M

17. Apr. 2022

von The M

24. Apr. 2022

von Ozma M

18. Juli 2021

von Anzor G

27. Dez. 2021

von Tenzin T

7. Sep. 2021

von John S

6. Okt. 2021

von 学洲 刘

6. Feb. 2022

von Alexander M

22. Juli 2021

von Diego M

20. Nov. 2021

von Burhanudin B

3. Juni 2022

von Mosleh M

6. Aug. 2021

von Sanjay C

17. Jan. 2022

von Muneeb V

14. Dez. 2021

von Parag K

22. Okt. 2021

von Clashing P

8. Okt. 2021

von Md. W A

27. März 2022