Chevron Left
Zurück zu Machine Learning: Regression

Bewertung und Feedback des Lernenden für Machine Learning: Regression von University of Washington

4.8
Sterne
5,488 Bewertungen

Über den Kurs

Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python....

Top-Bewertungen

PD

16. März 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

KM

4. Mai 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtern nach:

226 - 250 von 986 Bewertungen für Machine Learning: Regression

von Sahil D

15. Mai 2016

von isanco

25. Jan. 2016

von Iñaki D R

11. Juli 2020

von Thomas K A W

8. Jan. 2018

von Jessie J S

12. Mai 2018

von Kapil K

14. Feb. 2017

von Saheed S

19. Sep. 2017

von Santosh G

9. Juni 2016

von Hritik K S

27. Okt. 2019

von Ian F

9. Juni 2017

von Kris D

24. Dez. 2016

von Hongbing K

2. Jan. 2016

von Emil K

14. Jan. 2020

von Bruno V R S

26. Aug. 2020

von Salomon D

28. Aug. 2018

von Marcus V M d S

6. Okt. 2017

von Melwin J

30. Juli 2017

von Mantraraj D

5. Mai 2018

von girish s

19. Dez. 2015

von Tarun G

22. Juli 2017

von Dennis M

25. Apr. 2016

von Santosh K D

5. Juni 2019

von yiliang z

27. Feb. 2016

von Bernardo N

16. Jan. 2016

von Mark W

12. Aug. 2017