Chevron Left
Zurück zu Machine Learning: Regression

Bewertung und Feedback des Lernenden für Machine Learning: Regression von University of Washington

4.8
Sterne
5,488 Bewertungen

Über den Kurs

Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python....

Top-Bewertungen

PD

16. März 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

KM

4. Mai 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtern nach:

201 - 225 von 986 Bewertungen für Machine Learning: Regression

von Alfredo A M S

26. Juni 2016

von Borna J

19. Juni 2016

von Girish N

6. Aug. 2020

von Charlotte B

24. Juli 2019

von Liang-Yao W

26. Juni 2017

von Oshan

22. Juni 2017

von Holger P

30. Sep. 2016

von Andrea C

16. Aug. 2016

von George K

9. März 2016

von Yabin W

4. Aug. 2019

von Lennart B

7. Feb. 2016

von Joseph F

19. März 2018

von Ed S

2. März 2018

von Salim L

27. Aug. 2017

von Omar N T

30. März 2016

von Dipankar N

11. Dez. 2017

von Nadya O

6. Mai 2017

von Rahul J

2. Apr. 2017

von Chengcheng L

27. Dez. 2015

von Lavaneesh S

17. Sep. 2019

von 陈哲鸿

19. Mai 2018

von clara c

13. Mai 2016

von Huynh L D

13. Jan. 2016

von Fahim K

6. Jan. 2016

von Aditya K

15. Aug. 2016