Chevron Left
Zurück zu Sequence Models

Kursteilnehmer-Bewertung und -Feedback für Sequence Models von

26,603 Bewertungen
3,146 Bewertungen

Über den Kurs

In the fifth course of the Deep Learning Specialization, you will become familiar with sequence models and their exciting applications such as speech recognition, music synthesis, chatbots, machine translation, natural language processing (NLP), and more. By the end, you will be able to build and train Recurrent Neural Networks (RNNs) and commonly-used variants such as GRUs and LSTMs; apply RNNs to Character-level Language Modeling; gain experience with natural language processing and Word Embeddings; and use HuggingFace tokenizers and transformer models to solve different NLP tasks such as NER and Question Answering. The Deep Learning Specialization is a foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to take the definitive step in the world of AI by helping you gain the knowledge and skills to level up your career....


13. März 2018

I was really happy because I could learn deep learning from Andrew Ng.\n\nThe lectures were fantastic and amazing.\n\nI was able to catch really important concepts of sequence models.\n\nThanks a lot!

30. Juni 2019

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

Filtern nach:

2451 - 2475 von 3,117 Bewertungen für Sequence Models

von chandrashekar r

6. Feb. 2019

The RNN, LSTM< and GRU were very good. But the Week 3seemed a bit abstract. More could have been covered in Audio, Attention.

ALso the Jupyter Notebooks was frequently crashing, and it took lot of attempts to re-open the existing one. Lot of time wasted. Also it took long time to to submit and run the program

von Eysteinn F

27. Mai 2018

This course provided a nice high level overview of RNN models and associated Keras implementations. The tricks and tips given were a useful addition to my ML arsenal. The only thing that I feel discredits this course is that the programming assignments are easy to gloss over and pass without much engagement.

von Bill T

19. März 2018

Great introduction to RNNs and how to implement them in keras. I suspect it is a relatively new course as there are still typos and a few errors in the assignments (otherwise I would have given 5 stars) but the forums help you to find your way around them and hopefully in future versions they will be fixed.

von Amir T

5. Dez. 2019

Excellent lectures, some part was difficult and it took time for me to imagine the content of each parameter (e.g. when we talk about X, or a, or Waa what is the size of them and what do they represent). But in the exercises, it became more understandable. Exercises need previous knowledge of Keras and OOP.

von Shuxiao C

5. Feb. 2018

It is a fabulous course content-wise. However, I personally find the programming exercises overly easy (the instructors already build the framework for you and the only thing you need to do is to fill in the blanks), s.t. I'm still not able to build an RNN from scratch after completing all those exercises.

von Tien H D

10. Juli 2018

This course is good. It introduces the concepts regarding recurrent models. I specially like the attention model videos. In general, the exercises are well written. However, I'm not very familiar with Keras and working on the Keras code really takes my time even I'm quite experienced with Tensorflow.

von Ting C

20. Juli 2018

Professor Ng did a good job explaining sequence model and I finally understand the basic theories. However, there is room to improve especially on the Keras library part. I hope you can add some simple tutorial for that. Also, I still don't understand how to translate the architecture to Keras code.

von Vijeta D

4. Mai 2020

This is a very well structured course. I initially started this course almost 10 months ago but got distracted and started to learn sequence models on my own. But, at the end end I resorted to this course again and got my basics cleared out. Thanks to team for designing this course!

von Alberto H

23. Feb. 2018

Great explanations on the videos, and well designed programming exercises. However, the complexity of the programming tasks is not well dimensioned (1h - 1:30 h may be too little). Worse, some of the exercises are not well explained, with misleading information (e.g. about model tensor dimensions).

von K173664 S K

4. Nov. 2020

this is a well structured course, but it is not for beginners at all, andrew ng had put alot of his efforts in this. As a computer science major, I was able to grasp the maths concepts but for anyone comming from diffrent background its far from possible to understand all the theoratical concepts.

von Pedro H B D

30. Aug. 2019

There was not enough theory as the first three courses. Some explanations were superficial and difficult to understand. Maybe drawing the shape of the inputs, outputs, and other matrices in lectures would help to better visualize what's going on inside the networks. Overall, it was a great course.

von Miguel S

27. Nov. 2019

It's a great course. The information and knowledge that you get about Sequence Models is fantastic as a primer. Andrew is an amazing teacher throughout the entire specialization altough I found the content of the videos in the Sequence Models slightly more rushed than the previous 4 courses...

von Daan v d M

16. Nov. 2020

The theory was absolutely interesting and an eye-opener. The programming exercises were hard to make because of the keras/tensorflow knowledge and I actually ended up just fill-in in things, as were given in the examples, without really knowing what I was doing. Time for a Tensorflow course.

von Thiago H M

18. Apr. 2019

Poderia dar um pouco mais de instruções na hora de usar as funções do Keras. Ficou um pouco confuso.

No assignment da semana 3 (Machine translation). Tem um output que não precisa estar exatamente igual mas o curso não fala isso e acabei gastando bastante tempo nisso, só vi depois no fórum.

von Sujay B

9. Apr. 2018

Though the lessons are interesting and mathematically demanding, I felt that it was a good time spent learning these concepts. Overall I feel that the 3 weeks could be split into 4 weeks and learning could have been much smoother by adding some more lessons to address the contents of Week 2.

von Anna C

23. Juni 2019

Nice content, but the assignments are too easy and only demonstrate the pipeline instead of providing hand-on experience in picking the network and training with GPU. Also, there are some grader problems which has wasted my time to make my code pass the grader even if the answer is correct.

von Jingbo L

16. März 2018

The homework grading methods need improvement. I got the right model and get the right results, but still have to spend tons of time to make the submission pass the grading system. It is a waste of time for future learning. You may want to train a DL model to solve this grading problem :).

von Richard M

25. Okt. 2020

Great explanation of theory (RNNs etc.) and easy to follow course structure. The programming exercises are disappointing though: They mostly consist of mindlessly copying Keras functions without an understandable (!) explanation. Many provided links to the Keras documentation are outdated.

von Ali B

1. Sep. 2019

Obviously, The professor and TAs have put a lot of time for preparation of this course, and I really appreciate it. However, the hws of the course is too much focused on language translation. They could put another examples, say business data, to represent other applications of RNN/LSTMs.

von Chenyue W

8. Feb. 2019

The course should provide more instruction on the Keras and Tensorflow, since the notebook is largely dependent on the knowledge of these frameworks. Moreover, the logic of programming is not so well-organized: I personally prefer to have my own logic instead of modules got implemented :)

von Lukas K

3. Sep. 2018

Really interesting course with overview about sequence models and what can you do with them. Lectures from prof. NG are amazing as usual. The only thing I was missing was maybe more tutorials on Keras LSTM usage. The exercises on LSTM were quite confusing, especially using shared layers.

von Seyyed M A D

6. März 2020

Very Important !!!


We do need more programming assignments in order to master the material. We joined Andrew's courses to master (not just get introduced to) the materials, because Andrew and the rest of the team is awesome.

Thank you very very much for all your time and consideration

von Faraz H

13. März 2019

I am overwhelmed by too much material. Additionally Tensorflow and Keras syntax is not very elegant or coherent as they are such high-level languages. I learnt a lot at a high-level overview in this course, but my fundamental understanding was consolidated in the previous 4 courses.

von BlueBird

7. Sep. 2019

Finally, the last course was completed. For me, this course is very difficult, because the content of the course is somewhat obscure and difficult to understand. But I learned some basic knowledge about Natural Language Processing and Speech Recognition through this course. Thanks!

von Carolina F

8. Jan. 2020

This is my third course in Deep Learning, the contents and pace of learning are great, they provide a good level of understanding in the subject. The notebooks have bugs and I wasted a lot of times making them work, thus they could be improved to use that time actually learning.