Chevron Left
Zurück zu 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations

Learner Reviews & Feedback for 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations by National Taiwan University

4.9
652 Bewertungen
120 Bewertungen

Über den Kurs

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This first course of the two would focus more on mathematical tools, and the other course would focus more on algorithmic tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重數學類的工具,而另一課程將較為著重方法類的工具。]...

Top-Bewertungen

LL

Jun 24, 2018

This course give a theoretical analysis of machine learning,though there is not much introduction of algorithm in detail,but this helped me open a new door of machine learning.

TT

Mar 04, 2018

I am very grateful to the teacher for bring me to the world of Machine Learing. I am new in the field. I will try my best to learn the basic knowledge of ML.

Filtern nach:

101 - 116 of 116 Reviews for 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations

von Sui X

Jun 01, 2019

good

von Tony C

Jun 17, 2019

Great introduction for mathematical foundations of machine learning

von wuyusen

Aug 02, 2019

有点难

von Yi-Jung L

Aug 08, 2019

If the answer and the explanation of the homework are provided, it will be better.

von 王斌

Aug 08, 2019

表白林轩田老师

von TANG C

Aug 15, 2019

A Really helpful introduction course! Thanks!

von ZIAN X

Jan 13, 2019

Instructions were clear and good. I might just need to review it more times, but the first time I did feel that sometimes we've gone way into the weeds with the math and I lost the big picture - why are we looking at this equation to begin with? Maybe what would be beneficial is to have a concrete example that threads through the entire class and refer back to it to illustrate why we care about certain properties.

von 黄鑫荣

Oct 11, 2018

问题的切入点怪怪的,不如吴恩达的易懂

von alexhanbing

Aug 29, 2018

VC等在当前的指导意义不是很大,整体不错

von 王博洋

Aug 07, 2017

林老师讲课很好,但是希望老师在讲到一些比较容易混淆的概念的时候,可以举一些例子帮助我们加深理解。

von Gao C

Jan 03, 2018

课程不错,不过很多章节需要多看两遍才能清楚理解

von ZhengLiangLiang

Dec 24, 2017

课上得特别好 但是习题给的提示不够

von Jiazhi G

Aug 18, 2017

許多名詞似乎是自創新詞,但都能很好地描述ML的理論

課程的統計很吃重,難度的分配有些不均勻

整體來說是非常適合有數學底子學生的扎實入門課程

von 李瑞平

Apr 26, 2018

偏重于机器学习的理论基础

von yu c p

Jun 08, 2019

理論較深,也和其他機器學習課程起點不太一樣

von Daya_Jin

Jun 11, 2018

完全不推荐!这门课讲的全是 机器学习中的前提与假设,并且很多概念被老师复杂化了,可能老师拐弯抹角的讲某些概念的本意是为了学生更好的理解,但是真的讲得更复杂了。除非对机器学习的发展历史有执念、或者是专门深入研究机器学习的人,否则不推荐这门课,更推荐吴恩达和李宏毅的课。PS:本人专业硕士,方向机器学习,这门课中的很多东西我都用不上! 可能有志于学术方面的学硕或博士用得上。