Chevron Left
Zurück zu Parallele Programmierung

Bewertung und Feedback des Lernenden für Parallele Programmierung von École Polytechnique Fédérale de Lausanne

4.4
Sterne
1,819 Bewertungen

Über den Kurs

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala: https://www.coursera.org/learn/progfun2....

Top-Bewertungen

AL

23. Apr. 2018

The course is fairly advanced and you would need to review the materials many times to understand the concept. The assignments are definitely fun and not as straightforward as other courses.

RC

24. Aug. 2017

Superb study material. Learnt a lot during this course. I am not much into mathematical stuff, but got a hang of how to break problems and improve efficiency through parallelism.

Filtern nach:

226 - 250 von 269 Bewertungen für Parallele Programmierung

von dh l

7. Dez. 2016

von Taewoo K

26. Apr. 2020

von Adam S

21. Juni 2016

von Aleh V

3. März 2017

von Valerio M

27. Nov. 2016

von 家伟 陈

21. Dez. 2017

von Sangam K

30. Sep. 2017

von Hadrien H

20. Dez. 2016

von Andy D

14. Jan. 2017

von Ostap O

25. Juli 2021

von Shad A

2. Apr. 2017

von Federico L

5. Aug. 2017

von masaaki f

31. März 2017

von Pavel O

2. Okt. 2016

von Rudolf Z

20. Sep. 2017

von Shriraj B

24. März 2020

von Luis V

9. Nov. 2017

von Sergey

30. Sep. 2020

von Joseph K

31. Juli 2017

von Carlos V

19. Juni 2020

von Igor M

24. Okt. 2017

von Gabriel G

31. Okt. 2016

von Igor W

12. Juni 2017

von Igor C

29. Sep. 2016

von Cedric D B

8. Aug. 2017