Chevron Left
Zurück zu Praktisches maschinelles Lernen

Bewertung und Feedback des Lernenden für Praktisches maschinelles Lernen von Johns Hopkins University

3,215 Bewertungen

Über den Kurs

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation....



16. Jan. 2017

excellent course. Be prepared to learn a lot if you work hard and don't give up if you think it is hard, just continue thinking, and interact with other students and tutors + Google and Stackoverflow!


13. Aug. 2020

recommended for all the 21st centuary students who might be intrested to play with data in future or some kind of work related to make predictions systemically must have good knowledge of this course

Filtern nach:

1 - 25 von 610 Bewertungen für Praktisches maschinelles Lernen

von Thomas G

7. Juni 2017

von Yatin M

12. Okt. 2017

von Bernie P

7. Aug. 2018

von Thej

4. Juni 2019

von Jean P L

25. Apr. 2018

von Hamid M

21. Feb. 2018

von Thomas B

8. Nov. 2018

von Grégoire M

27. Sep. 2017

von Andrew C

14. Mai 2019

von Mariah B

6. Apr. 2020

von Daniele D F

25. Sep. 2020

von Erick M A

18. Aug. 2017

von Wayne H

27. Juni 2017

von Lingjian K

13. Juni 2017

von Mariana d S e S

1. März 2018

von Don M

15. Juli 2019

von Warren B

18. Feb. 2017

von Huynh L D

10. März 2016

von Norberto O

9. Juli 2018

von Madhuri

23. März 2016

von Dale H

17. Juni 2018

von Gianmarco P

31. Aug. 2020

von Christian B

30. Apr. 2017

von Foo C B

28. März 2021

von David S

18. Dez. 2018