Chevron Left
Zurück zu Introduction to Recommender Systems: Non-Personalized and Content-Based

Bewertung und Feedback des Lernenden für Introduction to Recommender Systems: Non-Personalized and Content-Based von University of Minnesota

4.5
Sterne
610 Bewertungen
130 Bewertungen

Über den Kurs

This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit. In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems....

Top-Bewertungen

BS

12. Feb. 2019

One of the best courses I have taken on Coursera. Choosing Java for the lab exercises makes them inaccessible for many data scientists. Consider providing a Python version.

DP

7. Dez. 2017

Nice introduction to recommender systems for those who have never heard about it before. No complex mathematical formula (which can also be seen by some as a downside).

Filtern nach:

51 - 75 von 128 Bewertungen für Introduction to Recommender Systems: Non-Personalized and Content-Based

von Abhijith R

30. Aug. 2020

Great intro to recommendation systems, the course is well structured and engaging to all students of different backgrounds.

von Тефикова А Р

5. Okt. 2016

Курс очень понравился, спасибо большое за такую уникальную возможность вникнуть в суть рекомендательных систем!

von Chris C

6. Juli 2021

Excellent content, great structured frameworks to understand when / why to use different recommenders

von Patrick D

25. Juni 2017

Great, thorough introduction with tracks for both Java programmers and non-programmers.

von Kevin R

8. Okt. 2017

Well-designed assignments and instructive programming exercises in the honors track.

von Ashwin R

26. Juni 2017

An excellent in-depth introduction into the concepts around recommendation systems!

von Santiago F

1. Feb. 2021

Muy claro y de gran ayuda para los que se estén introduciendo en el tema.

von Xinzhi Z

17. Juli 2019

Great course. I really appreciated the efforts spent by the course team.

von 王涛

10. Apr. 2019

Really Good! I think it will be helpful to me and take a job for me!

von Light0617

18. Juli 2017

great!! Let me better understand the research and practical fields!

von Sushmita B

7. Juni 2020

The course is very good and the course instructor is excellent .

von Luis D F R

17. Apr. 2017

Really good course to get started with recommendation systems!

von Apurva D

3. Aug. 2017

Awesome content...loved the industry expert interviews....

von Dan T

31. Okt. 2017

great overview of the breadth of material to get started

von Sreenath A

30. Juni 2017

Excellent course taught in simple language.

von Biswa s

28. März 2018

Good overview on the recommend-er system.

von Sherry L

21. Nov. 2017

great professors and inspiring lectures!

von 王嘉奕

6. Nov. 2019

Excellent course which helps me a lot.

von Su L

23. Aug. 2019

great course, learnt a lot, thanks!

von Fernando C C

7. Nov. 2016

pues esta bien chido el curso

von Son M

19. Jan. 2019

good exercises & lectures

von BEBIN K R

17. Sep. 2020

Wonderful experience

von Julia E

8. Nov. 2017

Thank you very much!

von Zhaoqi W

12. Mai 2022

Easy to understand.

von sagar s

4. Okt. 2018

Awesome. Worth it!