Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.
von
Über diesen Kurs
Was Sie lernen werden
Use regression analysis, least squares and inference
Understand ANOVA and ANCOVA model cases
Investigate analysis of residuals and variability
Describe novel uses of regression models such as scatterplot smoothing
Kompetenzen, die Sie erwerben
- Model Selection
- Generalized Linear Model
- Linear Regression
- Regression Analysis
von

Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
Lehrplan - Was Sie in diesem Kurs lernen werden
Week 1: Least Squares and Linear Regression
This week, we focus on least squares and linear regression.
Week 2: Linear Regression & Multivariable Regression
This week, we will work through the remainder of linear regression and then turn to the first part of multivariable regression.
Week 3: Multivariable Regression, Residuals, & Diagnostics
This week, we'll build on last week's introduction to multivariable regression with some examples and then cover residuals, diagnostics, variance inflation, and model comparison.
Week 4: Logistic Regression and Poisson Regression
This week, we will work on generalized linear models, including binary outcomes and Poisson regression.
Bewertungen
- 5 stars64,27 %
- 4 stars23,03 %
- 3 stars7,57 %
- 2 stars2,96 %
- 1 star2,15 %
Top-Bewertungen von REGRESSIONSMODELLE
The best course in my mind, but I am chocked about how Data Science people approach regression type of problems, it is almost 100% data mining and no theory!! I wonder where it will take us..
Great subject, was a bit frustrated with some of the material (seemed rushed and not well prepared). Great assignment, but too restrictive on the max number of pages allowed. Wasted a lot of time.
This was a tough class covering a lot of material. The last week on logistic regression completely lost me. If you're new to stats like me you might want to take it more than once.
This course has been the most difficult in the Dara Science track so far, but you get a more in depth knowledge in data analysis and interpretation based on statistical models.
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich diese Spezialisierung abonniere?
Ist finanzielle Unterstützung möglich?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.