Über diesen Kurs
12,863 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 39 Stunden zum Abschließen

Empfohlen: Best completed in 4 weeks, with a commitment of between 3 and 6 hours of work per week....

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 39 Stunden zum Abschließen

Empfohlen: Best completed in 4 weeks, with a commitment of between 3 and 6 hours of work per week....

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
4 Stunden zum Abschließen

Introduction to Kinematics

This module covers particle kinematics. A special emphasis is placed on a frame-independent vectorial notation. The position velocity and acceleration of particles are derived using rotating frames utilizing the transport theorem....
13 Videos (Gesamt 154 min), 3 Quiz
13 Videos
Kinematics Course Introduction1m
Module One: Particle Kinematics Introduction50
1: Particle Kinematics13m
Optional Review: Vectors, Angular Velocities, Coordinate Frames16m
2: Angular Velocity Vector9m
3: Vector Differentiation25m
3.1: Examples of Vector Differentiation25m
3.2: Example of Planar Particle Kinematics with the Transport Theorem16m
3.3: Example of 3D Particle Kinematics with the Transport Theorem14m
Optional Review: Angular Velocities, Coordinate Frames, and Vector Differentiation19m
Optional Review: Angular Velocity Derivative1m
Optional Review: Time Derivatives of Vectors, Matrix Representations of Vector2m
3 praktische Übungen
Concept Check 1 - Particle Kinematics and Vector Frames10m
Concept Check 2 - Angular Velocities4m
Concept Check 3 - Vector Differentiation and the Transport Theorem5m
Woche
2
6 Stunden zum Abschließen

Rigid Body Kinematics I

This module provides an overview of orientation descriptions of rigid bodies. The 3D heading is here described using either the direction cosine matrix (DCM) or the Euler angle sets. For each set the fundamental attitude addition and subtracts are discussed, as well as the differential kinematic equation which relates coordinate rates to the body angular velocity vector. ...
18 Videos (Gesamt 210 min), 1 Lektüre, 10 Quiz
18 Videos
1: Introduction to Rigid Body Kinematics18m
2: Directional Cosine Matrices: Definitions18m
3: DCM Properties7m
4: DCM Addition and Subtraction5m
5: DCM Differential Kinematic Equations8m
Optional Review: Tilde Matrix Properties2m
Optional Review: Rigid Body Kinematics and DCMs21m
6: Euler Angle Definition17m
7: Euler Angle / DCM Relation16m
7.1: Example: Topographic Frame DCM Development9m
8: Euler Angle Addition and Subtraction8m
9: Euler Angle Differential Kinematic Equations25m
10: Symmetric Euler Angle Addition20m
Optional Review: Euler Angle Definitions4m
Optional Review: Euler Angle Mapping to DCMs9m
Optional Review: Euler Angle Differential Kinematic Equations1m
Optional Review: Integrating Differential Kinematic Equations10m
1 Lektüre
Eigenvector Review10m
10 praktische Übungen
Concept Check 1 - Rigid Body Kinematics12m
Concept Check 2 - DCM Definitions12m
Concept Check 3 - DCM Properties10m
Concept Check 4 - DCM Addition and Subtraction8m
Concept Check 5 - DCM Differential Kinematic Equations (ODE)6m
Concept Check 6 - Euler Angles Definitions12m
Concept Check 7 - Euler Angle and DCM Relation30m
Concept Check 8 - Euler Angle Addition and Subtraction10m
Concept Check 9 - Euler Angle Differential Kinematic Equations45m
Concept Check 10 - Symmetric Euler Angle Addition6m
Woche
3
8 Stunden zum Abschließen

Rigid Body Kinematics II

This module covers modern attitude coordinate sets including Euler Parameters (quaternions), principal rotation parameters, Classical Rodrigues parameters, modified Rodrigues parameters, as well as stereographic orientation parameters. For each set the concepts of attitude addition and subtraction is developed, as well as mappings to other coordinate sets. ...
29 Videos (Gesamt 251 min), 17 Quiz
29 Videos
1: Principal Rotation Parameter Definition9m
2: PRV Relation to DCM18m
3: PRV Properties6m
Optional Review: Principal Rotation Parameters6m
4: Euler Parameter (Quaternion) Definition20m
5: Mapping PRV to EPs1m
6: EP Relationship to DCM16m
7: Euler Parameter Addition10m
8: EP Differential Kinematic Equations5m
Optional Review: Euler Parameters and Quaternions16m
9: Classical Rodrigues Parameters Definitions8m
10: CRP Stereographic Projection9m
11: CRP Relation to DCM8m
12: CRP Addition and Subtraction1m
13: CRP Differential Kinematic Equations1m
14: CRPs through Cayley Transform9m
Optional Review: CRP Properties6m
15: Modified Rodrigues Parameters Definitions9m
16: MRP Stereographic Projection5m
17: MRP Shadow Set Property7m
18: MRP to DCM Relation4m
19: MRP Addition and Subtraction4m
20: MRP Differential Kinematic Equation14m
21: MRP Form of the Cayley Transform7m
Optional Review: MRP Definitions8m
Optional Review: MRP Properties8m
22: Stereographic Orientation Parameters Definitions6m
Optional Review: SOPs14m
17 praktische Übungen
Concept Check 1 - Principal Rotation Definitions4m
Concept Check 2 - Principal Rotation Parameter relation to DCM12m
Concept Check 3 - Principal Rotation Addition12m
Concept Check 4 - Euler Parameter Definitions15m
Concept Check 5, 6 - Euler Parameter Relationship to DCM15m
Concept Check 7 - Euler Parameter Addition10m
Concept Check 8 - EP Differential Kinematic Equations20m
Concept Check 9 - CRP Definitions10m
Concept Check 10 - CRPs Stereographic Projection6m
Concept Check 11, 12 - CRP Addition12m
Concept Check 13 - CRP Differential Kinematic Equations20m
Concept Check 15 - MRPs Definitions16m
Concept Check 16 - MRP Stereographic Projection5m
Concept Check 17 - MRP Shadow Set6m
Concept Check 18 - MRP to DCM Relation8m
Concept Check 19 - MRP Addition and Subtraction10m
Concept Check 20 - MRP Differential Kinematic Equation30m
Woche
4
5 Stunden zum Abschließen

Static Attitude Determination

This module covers how to take an instantaneous set of observations (sun heading, magnetic field direction, star direction, etc.) and compute a corresponding 3D attitude measure. The attitude determination methods covered include the TRIAD method, Devenport's q-method, QUEST as well as OLAE. The benefits and computation challenges are reviewed for each algorithm....
13 Videos (Gesamt 120 min), 6 Quiz
13 Videos
1: Attitude Determination Problem Statement17m
2: TRIAD Method Definition11m
2.1: TRIAD Method Numerical Example9m
3: Wahba's Problem Definition11m
4: Devenport's q-Method16m
4.1: Example of Devenport's q-Method7m
5: QUEST9m
5.1: Example of QUEST3m
6: Optimal Linear Attitude Estimator5m
6.1: Example of OLAE2m
Optional Review: Attitude Determination14m
Optional Review: Attitude Estimation Algorithms10m
5 praktische Übungen
Concept Check 1 - Attitude Determination8m
Concept Check 2 - TRIAD Method10m
Concept Check 3, 4 - Devenport's q-Method15m
Concept Check 5 - QUEST Method15m
Concept Check 6 - OLAE Method12m
4.8
21 BewertungenChevron Right

Top-Bewertungen

von SMOct 19th 2017

Brilliant classes! Absolutely brilliant, enjoyed every bit of it. All you need is that you should love Physics and Maths to attend these classes. If you do, it is an enriching experience for you.

von MBOct 19th 2017

This is a great course for beginners in kinematics, I enjoy it and learn so much. However, you need to have a good math background.

Dozent

Avatar

Hanspeter Schaub

Glenn L. Murphy Chair of Engineering, Professor
Department of Aerospace Engineering Sciences

Über University of Colorado Boulder

CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies....

Über die Spezialisierung Spacecraft Dynamics and Control

Spacecraft Dynamics and Control covers three core topic areas: the description of the motion and rates of motion of rigid bodies (Kinematics), developing the equations of motion that prediction the movement of rigid bodies taking into account mass, torque, and inertia (Kinetics), and finally non-linear controls to program specific orientations and achieve precise aiming goals in three-dimensional space (Control). The specialization invites learners to develop competency in these three areas through targeted content delivery, continuous concept reinforcement, and project applications. The goal of the specialization is to introduce the theories related to spacecraft dynamics and control. This includes the three-dimensional description of orientation, creating the dynamical rotation models, as well as the feedback control development to achieve desired attitude trajectories....
Spacecraft Dynamics and Control

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..