Chevron Left
Zurück zu State Estimation and Localization for Self-Driving Cars

Bewertung und Feedback des Lernenden für State Estimation and Localization for Self-Driving Cars von University of Toronto

4.7
Sterne
747 Bewertungen

Über den Kurs

Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws)....

Top-Bewertungen

GN

29. Okt. 2019

best online course so far that explains kalman filter and estimation methods with examples not just focusing on theoretical ,Thanks to the Dr's and course staff who worked hard to produce this course.

JC

9. Feb. 2021

The course is informative and well constructed for learners. The final project is designed well so that we can build sensor fusion tools while applying what we have learned from this course.

Filtern nach:

76 - 100 von 121 Bewertungen für State Estimation and Localization for Self-Driving Cars

von shridhar v

8. Juni 2020

von 张志萌

8. März 2022

von Vishwas N

29. Apr. 2020

von Johnnylee

16. Mai 2022

von Luis E T R

13. Sep. 2020

von Sujeet B

7. Dez. 2020

von Davi F d B

25. Sep. 2022

von Bao N

28. Mai 2020

von MIHIR R J

30. Mai 2020

von mert s

31. Okt. 2019

von Adam A

2. März 2021

von Arturo A E O

2. Sep. 2020

von Cesar Q

15. Okt. 2021

von Matías F

18. Jan. 2021

von Jeff D

28. Nov. 2020

von Md. R Q S

19. Aug. 2020

von Soumyajit M

5. Okt. 2020

von Nejc D

6. Mai 2020

von Maksym B

3. Apr. 2019

von Baixiao

29. Juli 2019

von Lealem S T

12. Apr. 2021

von Nicolas Y

4. Dez. 2019

von mike w c

18. Juni 2019

von Shubham R P

20. Sep. 2019

von Atharva K

30. Mai 2020