Über diesen Kurs
4.7
710 Bewertungen
101 Bewertungen

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 39 Stunden zum Abschließen

Empfohlen: 4 недели обучения, через 2-4 часа / неделю...

Russisch

Untertitel: Russisch

Kompetenzen, die Sie erwerben

A/B TestingData AnalysisCorrelation And DependenceStatistical Hypothesis TestingStatistics

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 39 Stunden zum Abschließen

Empfohlen: 4 недели обучения, через 2-4 часа / неделю...

Russisch

Untertitel: Russisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
6 Stunden zum Abschließen

Интервалы и гипотезы

Добро пожаловать на курс "Построение выводов по данным"! В этом модуле вы узнаете, как работают базовые статистические техники — интервальное оценивание и проверка гипотез. В тестах вас ждёт большое количество задач с реальными данными на применение этих техник....
21 Videos (Gesamt 106 min), 14 Lektüren, 5 Quiz
21 Videos
Как устроена специализация, и зачем ее проходить3m
Выводы и рациональность2m
Проблемы построения выводов1m
Примеры прикладных задач1m
Как устроен этот курс1m
МФТИ1m
Интервальные оценки с помощью квантилей4m
Доверительные интервалы с помощью квантилей6m
Распределения, производные от нормального5m
Доверительные интервалы для среднего8m
Доверительные интервалы для доли8m
Доверительные интервалы для двух долей5m
Доверительные интервалы на основе бутстрепа8m
Проверка гипотез: начало5m
Ошибки I и II рода3m
Достигаемый уровень значимости2m
Статистическая и практическая значимость6m
Биномиальный критерий для доли7m
Критерии согласия Пирсона (хи-квадрат)5m
Связь между проверкой гипотез и доверительными интервалами8m
14 Lektüren
Формат специализации и получение сертификата10m
МФТИ10m
Немного о Yandex10m
Forum&Chat10m
Доверительные интервалы для среднего [ipython notebook]10m
Доверительные интервалы для доли [ipython notebook]10m
Доверительные интервалы для двух долей [ipython notebook]10m
Доверительные интервалы на основе бутстрепа [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Биномиальный критерий для доли [ipython notebook]10m
Критерии согласия Пирсона (хи-квадрат) [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
5 praktische Übungen
Доверительные интервалы для среднего14m
Доверительные интервалы для долей12m
Доверительные интервалы16m
Теория проверки гипотез14m
Практика проверки гипотез10m
Woche
2
5 Stunden zum Abschließen

АБ-тестирование

Вторая неделя посвящена задачам АБ-тестирования — статистической технике, позволяющей оценить действие изменений в вашем продукте на конечного пользователя. Вы узнаете, как правильно такой эксперимент строить и какими методами анализировать. ...
21 Videos (Gesamt 137 min), 10 Lektüren, 4 Quiz
21 Videos
Где используется АБ-тестирование3m
Метрики4m
Дизайн эксперимента4m
Устойчивость6m
Размер выборки3m
Одновыборочные критерии Стьюдента10m
Двухвыборочные критерии Стьюдента, независимые выборки7m
Двухвыборочные критерии Стьюдента, связанные выборки4m
Нормальность выборок8m
Пример: применение критериев Стьюдента9m
Гипотезы о долях8m
Пример: проверка гипотез о долях8m
Как работают непараметрические критерии?2m
Критерии знаков6m
Ранговые критерии9m
Перестановочные критерии8m
Перестановки и бутстреп7m
Пример: одновыборочные непараметрические критерии7m
Пример: двухвыборочные непараметрические критерии (связанные выборки)6m
Пример: двухвыборочные непараметрические критерии (независимые выборки)6m
10 Lektüren
Конспект10m
Применение критериев Стьюдента [ipython notebook]10m
Проверка гипотез о долях [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Одновыборочные непараметрические критерии [ipython notebook]10m
Двухвыборочные непараметрические критерии (связанные выборки) [ipython notebook]10m
Двухвыборочные непараметрические критерии (независимые выборки) [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
4 praktische Übungen
Планирование эксперимента8m
Критерии Стьюдента14m
Параметрические критерии14m
Непараметрические критерии14m
Woche
3
6 Stunden zum Abschließen

Закономерности и зависимости

На этой неделе мы будем искать закономерности и выявлять зависимости. Для этого можно использовать разные методы; мы поговорим о корреляционных и регрессионных. Поскольку в основе этих методов лежит проверка большого количества гипотез, необходимо делать поправку на множественность — почему и как, вы тоже узнаете....
22 Videos (Gesamt 144 min), 11 Lektüren, 6 Quiz
22 Videos
Внешние факторы, влияющие на продажи4m
Корреляция Пирсона3m
Корреляция Спирмена3m
Корреляция Мэтьюса и коэффициент Крамера4m
Пример: поиск взаимосвязей с помощью корреляции7m
Значимость корреляции8m
Булщит и консервативность8m
Корреляция и причинно-следственная связь3m
В чем проблема?5m
Постановка4m
FWER. Поправка Бонферрони5m
FWER. Метод Холма4m
FDR. Метод Бенджамини-Хохберга5m
Пример: поправки на множественную проверку при корреляционном анализе7m
Анализ подгрупп6m
Взаимосвязь нескольких признаков4m
Свойства решения задачи8m
Интервалы и гипотезы9m
Проверка предположений7m
Регрессия и причинно-следственные связи9m
Пример: оценка зависимости с помощью регрессии19m
11 Lektüren
Конспект10m
Поиск взаимосвязей с помощью корреляции [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Поправки на множественную проверку при корреляционном анализе [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Оценка зависимости с помощью регрессии [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Q&A10m
6 praktische Übungen
Коэффициенты корреляции10m
Корреляционный анализ20m
Поправки на множественную проверку12m
Множественная проверка гипотез16m
Теория построения регрессии10m
Практика построения регрессии20m
Woche
4
1 Stunde zum Abschließen

Неделя задач

На этой неделе мы поговорим с экспертами в прикладных областях анализа данных и узнаем, чем особенны их задачи, какие методы построения выводов они используют, и на что они советуют обращать внимание. Для прохождения курса вам нужно решить как минимум два задания, но, если вам интересно, вы можете сделать все....
3 Lektüren
3 Lektüren
Список литературы10m
Финальные титры10m
Стань ментором специализации10m
6 Stunden zum Abschließen

Неделя задач: Lesson Choices

...
4 Videos (Gesamt 57 min), 4 Quiz
4 Videos
Интервью с Алексеем Шатерниковым про скоринг15m
Интервью с Еленой Кунаковой18m
Интервью с Алексеем Шатерниковым про отток12m
2 praktische Übungen
Анализ результатов АБ-теста14m
Анализ эффективности удержания18m
4.7
101 BewertungenChevron Right

50%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

67%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

Top-Bewertungen

von PKMay 4th 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

von SMJun 27th 2016

Интересный и достаточно сложный для меня курс. Не хватает только методички с кратким описанием основных методов, критериев и условий их применения.

Über Moscow Institute of Physics and Technology

Московский физико-технический институт (неофициально известный как МФТИ или Физтех) является одним из самых престижных в мире учебных и научно-исследовательских институтов. Он готовит высококвалифицированных специалистов в области теоретической и прикладной физики, прикладной математики, информатики, биотехнологии и смежных дисциплин. Физтех был основан в 1951 году Нобелевской премии лауреатами Петром Капицей, Николаем Семеновым, Львом Ландау и Сергеем Христиановичем. Основой образования в МФТИ является уникальная «система Физтеха»: кропотливое воспитание и отбор самых талантливых абитуриентов, фундаментальное образование высшего класса и раннее вовлечение студентов в реальную научно-исследовательскую работу. Среди выпускников МФТИ есть Нобелевские лауреаты, основатели всемирно известных компаний, известные космонавты, изобретатели, инженеры....

Über Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Über die Spezialisierung Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..