Über diesen Kurs
28,440 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 29 Stunden zum Abschließen

Empfohlen: 8 weeks of study, 6-8 hours per week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 29 Stunden zum Abschließen

Empfohlen: 8 weeks of study, 6-8 hours per week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
2 Stunden zum Abschließen

Week 1: Introduction & Renewal processes

Upon completing this week, the learner will be able to understand the basic notions of probability theory, give a definition of a stochastic process; plot a trajectory and find finite-dimensional distributions for simple stochastic processes. Moreover, the learner will be able to apply Renewal Theory to marketing, both calculate the mathematical expectation of a countable process for any renewal process

...
12 Videos (Gesamt 88 min), 1 Lektüre, 1 Quiz
12 Videos
Week 1.3: Probability space8m
Week 1.4: Definition of a stochastic function. Types of stochastic functions.4m
Week 1.5: Trajectories and finite-dimensional distributions5m
Week 1.6: Renewal process. Counting process7m
Week 1.7: Convolution11m
Week 1.8: Laplace transform. Calculation of an expectation of a counting process-17m
Week 1.9: Laplace transform. Calculation of an expectation of a counting process-26m
Week 1.10: Laplace transform. Calculation of an expectation of a counting process-38m
Week 1.11: Limit theorems for renewal processes14m
1 Lektüre
Quiz-1 answers and solutions10m
1 praktische Übung
Introduction & Renewal processes12m
Woche
2
2 Stunden zum Abschließen

Week 2: Poisson Processes

Upon completing this week, the learner will be able to understand the definitions and main properties of Poisson processes of different types and apply these processes to various real-life tasks, for instance, to model customer activity in marketing and to model aggregated claim sizes in insurance; understand a relation of this kind of models to Queueing Theory

...
17 Videos (Gesamt 89 min), 1 Lektüre, 1 Quiz
17 Videos
Week 2.4: Definition of a Poisson process as a special example of renewal process. Exact forms of the distributions of the renewal process and the counting process-44m
Week 2.5: Memoryless property5m
Week 2.6: Other definitions of Poisson processes-13m
Week 2.7: Other definitions of Poisson processes-24m
Week 2.8: Non-homogeneous Poisson processes-14m
Week 2.9: Non-homogeneous Poisson processes-24m
Week 2.10: Relation between renewal theory and non-homogeneous Poisson processes-14m
Week 2.11: Relation between renewal theory and non-homogeneous Poisson processes-27m
Week 2.12: Relation between renewal theory and non-homogeneous Poisson processes-34m
Week 2.13: Elements of the queueing theory. M/G/k systems-19m
Week 2.14: Elements of the queueing theory. M/G/k systems-25m
Week 2.15: Compound Poisson processes-16m
Week 2.16: Compound Poisson processes-26m
Week 2.17: Compound Poisson processes-33m
1 Lektüre
Quiz-2 answers and solutions10m
1 praktische Übung
Poisson processes & Queueing theory14m
Woche
3
2 Stunden zum Abschließen

Week 3: Markov Chains

Upon completing this week, the learner will be able to identify whether the process is a Markov chain and characterize it; classify the states of a Markov chain and apply ergodic theorem for finding limiting distributions on states

...
7 Videos (Gesamt 73 min), 1 Lektüre, 1 Quiz
7 Videos
Week 3.4: Graphic representation. Classification of states-24m
Week 3.5: Graphic representation. Classification of states-37m
Week 3.6: Ergodic chains. Ergodic theorem-16m
Week 3.7: Ergodic chains. Ergodic theorem-215m
1 Lektüre
Quiz-3 answers and solutions10m
1 praktische Übung
Markov Chains12m
Woche
4
2 Stunden zum Abschließen

Week 4: Gaussian Processes

Upon completing this week, the learner will be able to understand the notions of Gaussian vector, Gaussian process and Brownian motion (Wiener process); define a Gaussian process by its mean and covariance function and apply the theoretical properties of Brownian motion for solving various tasks

...
8 Videos (Gesamt 87 min), 1 Lektüre, 1 Quiz
8 Videos
Week 4.4: Definition of a Gaussian process. Covariance function-15m
Week 4.5: Definition of a Gaussian process. Covariance function-210m
Week 4.6: Two definitions of a Brownian motion18m
Week 4.7: Modification of a process. Kolmogorov continuity theorem7m
Week 4.8: Main properties of Brownian motion6m
1 Lektüre
Quiz-4 answers and solutions10m
1 praktische Übung
Gaussian processes12m
4.4
36 BewertungenChevron Right

56%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

14%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Top reviews from Stochastische Prozesse

von SSMay 21st 2019

This course has less number of quiz questions but sufficient and well designed questions.

von ZMDec 1st 2018

Well presented course. I enjoyed it and was challenged a great deal. Thank you.

Dozent

Avatar

Vladimir Panov

Assistant Professor
Faculty of economic sciences, HSE

Über National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..