Chevron Left
Zurück zu Обучение на размеченных данных

Kursteilnehmer-Bewertung und -Feedback für Обучение на размеченных данных von Moscow Institute of Physics and Technology

4.8
stars
2,162 Bewertungen
279 Bewertungen

Über den Kurs

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Top-Bewertungen

RN

Jan 21, 2017

Один из лучших курсов по обучению на размеченных данных. Немного расстраивали несбалансированность сложности домашних заданий и промежуточных проверок правильности подготовки данных в заданиях.

AG

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

Filtern nach:

226 - 250 von 262 Bewertungen für Обучение на размеченных данных

von Domnin V

Jan 27, 2019

Любопытный вводный курс, дающий мне как новичку представление о сложившейся терминологии, базовых инструментах, а главное широте и объеме темы. Тема огромна.

Спасибо инструкторам за энтузиазм и информативность изложения. Получилось точно не хуже, чем AWS тренинг.

von Ivan O

May 02, 2018

Хороший курс, здесь совсем мало нейронок, но очень хорошее введение в целом в алгоритмы машинного обучения. На практике может занять больше заявленных 5 недель, ну и встречаются задания в которых нужно поплясать с бубном, чтобы ответ приняли.

von Gulnur B

Apr 12, 2019

Отличный курс! Расстроила только последняя неделя: неудачный выбор лектора в первом разделе; недостаток взаимосвязанности с предыдущим материалом; скомканность достаточно интересных тем. Тем не менее, огромное спасибо за вашу работу!

von Беденко А А

Jan 23, 2018

Жалко, что нейронные сети остались за бортом. С другой стороны - полученных знаний вполне хватает чтобы понимать учебники по НС. Так что наверстаем. 4 первых недели прекрасны. Последняя неделя - IMHO винегрет. Потому 4 из 5.

von Шаланкин М Д

Mar 14, 2019

Хороший сложный курс, насыщенная программа и интересные задания.UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

von Stanislav

Feb 22, 2018

Замечательный курс, узнал много важных вещей. Но последняя неделя показалась несколько поверхностной. Надеюсь, что её материал будет рассмотрен подробнее в следующих курсах специализации.

von Радионов А

Sep 20, 2017

Курс отличный: грамотно подаются практические аспекты обучения с учителем. Правда, впечатление несколько портит использование Python 2 и странное задание с PyBrain. Но это не критично.

von Vladimir Y

Feb 14, 2018

Хороший курс, но есть ряд замечаний к практическим заданиям. Мне кажется они нуждаются в дополнительной проработке и им необходима более широкая лекционная поддержка.

von Dmitriy R

Jun 28, 2017

Практическая работа по нейронным сетям не дала никаких навыков по работе с ними. Просто copy-paste предыдущих строчек кода в этом же ipython notebook.

von Vadim T

Mar 25, 2017

Велика разница между преподавателями. Особенно неудачно, на мой взгляд, освещались темы Байесовской классификации и регресии и метрические алгоритмы

von Максим Ф

Aug 25, 2019

Не все вопросы были достаточно понятными, хотелось бы более нормальных вопросов. В остальном всё очень круто. Спасибо

von Nikolay S

Mar 24, 2018

Некоторые задания были плохо составлены. Было слишком много ошибок/багов/опечаток. В остальном было полезно.

von Arsenii M

Jul 22, 2017

В конеце курса немного скомканно подаётся материал, особенно на пятой неделе. В остальном всё отлично!

von Polovinkin A

Oct 08, 2017

- балл за наличие ошибок и недосказанностей в заданиях спустя огромное время с момента старта курса

von Maksim S

Nov 25, 2019

Коллеги, данный курс можно было бы сделать и подлиннее) Особенно 5ю неделю) А так все ок! )

von Alexey S

May 23, 2016

Не смотря на то, что курс "сыроват" я почерпнул много полезного для работы и лично для себя

von Dmitry D

Nov 09, 2018

Курс отличный! В меру теории и практики. Только 5я неделя подкачала - очень скомканно.

von Студенников В Ю

Oct 25, 2016

Не все используемые понятия объясняются. Очень мало внимания уделено нейронным сетям.

von Gyrdymov I

Nov 30, 2016

Слишком сумборно был подан материал по нейронным сетям, много непонятного осталось

von Рыжов В П

Nov 11, 2019

В целом хорошо, но по нейронным сетям слишком мало было рассказано.

von Maria N

Oct 01, 2019

Очень понятно все и интересно. Но по нейронным сетям большой минус.

von Чернышев А О

Sep 18, 2017

Про нейронные сети мало рассказывается, "галопом по Европе"

von Павлов Е В

Jul 09, 2017

Не очень понятно изложено про XGBoost и нейронную сеть.

von Амиров Р М

Apr 24, 2017

Отличный курс! Жаль, что мало практики по нейронкам.

von Антон Г

Oct 24, 2018

Отличный курс, но хотелось бы больше про нейросети