Chevron Left
Zurück zu Обучение на размеченных данных

Kursteilnehmer-Bewertung und -Feedback für Обучение на размеченных данных von Moscow Institute of Physics and Technology

4.8
2,111 Bewertungen
274 Bewertungen

Über den Kurs

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Top-Bewertungen

RN

Jan 21, 2017

Один из лучших курсов по обучению на размеченных данных. Немного расстраивали несбалансированность сложности домашних заданий и промежуточных проверок правильности подготовки данных в заданиях.

AG

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

Filtern nach:

126 - 150 von 256 Bewertungen für Обучение на размеченных данных

von Нагорный П В

Apr 05, 2018

Очень классный курс, дающий понимание основных алгоритмов машинного обучения

von Михалев С А

Nov 07, 2017

Отличный курс!

von Борисихин А Н

Mar 03, 2018

Very intensive and interestign course

von Цхондия Г А

Nov 21, 2017

cool

von Ковалев А

Jun 12, 2018

отлично!

von Artyom T

Mar 19, 2018

Great!

von Зубачев Д С

Nov 10, 2017

Хороший курс. Узнал много нового и интересного. Жаль, что мало материала по нейронным сетям. Очень понравился случайный лес и градиентный бустинг над решающими деревьями. Авторам огромное спасибо за проделанную работу!

von Maria A

Dec 25, 2016

I'm very grateful to everybody who prepared that course! It's very useful, extremely interesting and super practical. It is very concise and coherent with the the materials from the previous courses from the specialization. I will recommend this course to my friends for sure.

von Яков Ч

May 04, 2017

отличный с практической точки зрения курс

von Sanin I

Dec 11, 2016

Отличный курс. Окунает в дебри ML. Обязательно продолжу обучение по специализации

von Vadim U

Jan 07, 2018

В целом лекции хорошие, кроме части про нейронные сети. В них все декларировалось, мало что объяснялось. Спасали только лекции Воронцова.

von Ievgenii O

Jan 13, 2017

Nice!

von Anton K

Dec 09, 2017

Good job!

von Alex S

Nov 13, 2016

Отличный курс! Много интересных практических заданий. Надеюсь следующие курсы специализации будут такими же интересными.

von Kuznetcov I

Apr 19, 2018

Great. Some times I had feel that we need more math, but due to course should cover different skills range then good enough.

Thank you!

von Seilov T

Sep 23, 2017

Nice!

von Sergey P

May 17, 2016

Курс неплохой, интересный. Много практики. Нагрузка, все же, довольно высокая, особенно для работающего человека, поэтому бывает тяжело. Особенно огорчают ошибки в грейдере (на третьей деле, если не ошибаюсь, столкнулся), из-за них убивается действительно гигантское количество времени. Еще один минус - некоторые моменты в лекциях освещаются очень поверхностно, а порой на слушателя просто вываливаются большие формулы, а пояснение дано к ним в двух словах. В этом плане классический ml class с Andrew Ng мне понравился больше, т.к. теория там дана была более подробно, но зато было меньше практики (а тут плюс текущему курсу).

Например, если в теоретическом материале преподаватель скажет почему функция потерь, например, log-loss получается именно такой, то этот материал станет интересней в квадрате! :)

Тем не менее спасибо, было интересно.

von Катя

Jun 30, 2016

<3

von Taranov G

Jun 13, 2016

Отличный курс по введению в обучение на размеченных данных.

Жалко что нет модуля по работе с признаками, их очисткой и дискретизацией

von Dremina A

May 29, 2017

Хороший курс, где все разложено по полочкам. Понятная теория, интересное изложение, хорошо подобранные задачи, справки по функциям и даже есть подсказки, если отправленный ответ не совпадает с правильным. Понравились лекторы, рассказывали с огоньком в глазах :)

von Adylzhan K

Feb 01, 2018

Хороший курс

von Vasiliy Z

Jun 08, 2016

В курсе подробно разобраны базовые методы машинного обучения с учителем.

Рассмотрены линейные модели, деревья, композиции алгоритмов. Ко всему материалу дана математическая база, практическая реализация на Python с использованием соответствующих библиотек и задачи на закрепление материала.

Много внимания уделено правильно подготовке и работе с данными, рассмотрены различные реальные проблемы и возможные решения, весь материал подкреплен практическими заданиями.

Курс не очень сложный, отлично совмещает практику и теорию, рекомендую всем кто интересуется темой.

von Andrii D

Apr 29, 2018

Хороший курс, много времени уделено объяснению теории. На мой взгляд - лучше параллельно читать с "The elements of statistical learning", там некоторые моменты подробнее объясняются.

von Sergey B

Apr 19, 2016

Отличное продолжение вводного курса. Прекрасные лекции и интересные задания. Рекомендую!

von Marsel B

Dec 18, 2016

Подробно и понятно вводят в дисциплину, если не хватит чего-то в лекциях и практике, есть ссылки на литературу, где можно глубже погрузиться в тему.