Über diesen Kurs

230,314 kürzliche Aufrufe

Karriereergebnisse der Lernenden

47%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

60%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

40%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Zertifikat zur Vorlage

Erhalten Sie nach Abschluss ein Zertifikat

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 50 Stunden zum Abschließen

Russisch

Untertitel: Russisch

Kompetenzen, die Sie erwerben

Random ForestPython ProgrammingMachine LearningSupervised Learning

Karriereergebnisse der Lernenden

47%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

60%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

40%

erhalten Sie eine Gehaltserhöhung oder Beförderung

Zertifikat zur Vorlage

Erhalten Sie nach Abschluss ein Zertifikat

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 50 Stunden zum Abschließen

Russisch

Untertitel: Russisch

von

Moscow Institute of Physics and Technology-Logo

Moscow Institute of Physics and Technology

Yandex-Logo

Yandex

E-Learning Development Fund-Logo

E-Learning Development Fund

Lehrplan - Was Sie in diesem Kurs lernen werden

InhaltsbewertungThumbs Up88%(33,693 Bewertungen)Info
Woche
1

Woche 1

9 Stunden zum Abschließen

Машинное обучение и линейные модели

9 Stunden zum Abschließen
13 Videos (Gesamt 82 min), 8 Lektüren, 8 Quiz
13 Videos
Как устроена специализация, и зачем ее проходить3m
МФТИ1m
Знакомство с машинным обучением11m
Обучение на размеченных данных5m
Обучение без учителя5m
Признаки в машинном обучении8m
Линейные модели в задачах регрессии9m
Обучение линейной регрессии6m
Градиентный спуск для линейной регрессии7m
Стохастический градиентный спуск4m
Линейная классификация6m
Функции потерь в задачах классификации6m
8 Lektüren
Формат специализации и получение сертификата10m
Немного о Yandex10m
МФТИ10m
Forum&Chat10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
6 praktische Übungen
Основные термины в машинном обучении6m
Типы задач в машинном обучении6m
Машинное обучение: задачи и признаки12m
Линейная регрессия4m
Градиентный спуск4m
Линейные модели8m
Woche
2

Woche 2

9 Stunden zum Abschließen

Борьба с переобучением и оценивание качества

9 Stunden zum Abschließen
14 Videos (Gesamt 126 min), 9 Lektüren, 8 Quiz
14 Videos
Регуляризация7m
Оценивание качества алгоритмов7m
Сравнение алгоритмов и выбор гиперпараметров4m
Метрики качества в задачах регрессии10m
Метрики качества классификации4m
Точность и полнота8m
Объединение точности и полноты5m
Качество оценок принадлежности классу12m
Встроенные датасеты. Sklearn.datasets15m
Кросс-валидация. Sklearn.cross_validation9m
Линейные модели. Sklearn.linear_model. Классификация10m
Линейные модели. Sklearn.linear_model. Регрессия7m
Метрики качества. Sklearn.metrics13m
9 Lektüren
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
Встроенные датасеты. Sklearn.datasets (ipython notebook)10m
Кросс-валидация. Sklearn.cross_validation (ipython notebook)10m
Линейные модели. Sklearn.linear_model. Классификация (ipython notebook)10m
Линейные модели. Sklearn.linear_model. Регрессия (ipython notebook)10m
Метрики качества. Sklearn.metrics (ipython notebook)10m
6 praktische Übungen
Проблема переобучения6m
Проблема переобучения и борьба с ней10m
Как измерить качество алгоритма?6m
Метрики качества10m
Встроенные датасеты и кросс-валидация8m
Введение в scikit-learn10m
Woche
3

Woche 3

7 Stunden zum Abschließen

Линейные модели: классификация и практические аспекты

7 Stunden zum Abschließen
14 Videos (Gesamt 97 min), 7 Lektüren, 7 Quiz
14 Videos
Метод максимального правдоподобия4m
Регрессия как максимизация правдоподобия2m
Регрессия как оценка среднего4m
Регуляризация8m
Задача оценивания вероятностей и логистическая регрессия8m
Масштабирование признаков6m
Спрямляющие пространства5m
Работа с категориальными признаками4m
Несбалансированные данные5m
Многоклассовая классификация4m
Подбор параметров по сетке. Sklearn.grid_search9m
Задача: bike sharing demand15m
Задача: bike sharing demand. Продолжение13m
7 Lektüren
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
Подбор параметров по сетке. Sklearn.grid_search (ipython notebook)10m
Задача Bike Sharing Demand (ipython notebook)10m
Задача Bike Sharing Demand. Продолжение (ipython notebook)10m
6 praktische Übungen
Метод максимального правдоподобия6m
Линейные модели: статистический взгляд14m
Линейные модели: подготовка признаков6m
Линейные модели: практические аспекты6m
Подбор параметров по сетке6m
Анализ данных в scikit-learn12m
Woche
4

Woche 4

10 Stunden zum Abschließen

Решающие деревья и композиции алгоритмов

10 Stunden zum Abschließen
17 Videos (Gesamt 114 min), 10 Lektüren, 8 Quiz
17 Videos
Обучение решающих деревьев6m
Критерии информативности7m
Критерии останова и стрижка деревьев4m
Решающие деревья и категориальные признаки8m
Решающие деревья в sklearn10m
Композиции деревьев6m
Смещение и разброс9m
Случайные леса6m
Трюки со случайными лесами4m
Случайные леса в sklearn7m
Композиции простых алгоритмов5m
Градиентный бустинг7m
Борьба с переобучением в градиентном бустинге6m
Градиентный бустинг для регрессии и классификации4m
Градиентный бустинг над решающими деревьями5m
Градиентный бустинг в XGBoost5m
10 Lektüren
Решающие деревья в sklearn (ipython notebook)10m
Слайды к лекциям10m
Конспект10m
Случайные леса в sklearn (ipython notebook)10m
Слайды к лекциям10m
Конспект10m
XGBoost10m
Градиентный бустинг в XGBoost (ipython notebook)10m
Слайды к лекциям10m
Конспект10m
6 praktische Übungen
Построение решающих деревьев8m
Решающие деревья14m
Бэггинг6m
Композиции и случайные леса8m
Обучение композиций и градиентный бустинг4m
Градиентный бустинг: обучение и практические аспекты8m

Über den Spezialisierung Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

  • Wenn Sie ein Abonnement abgeschlossen haben, erhalten Sie eine 7-tägige, kostenlose Testversion, die Sie gebührenfrei wieder kündigen können. Danach gewähren wir keine Rückerstattungen mehr, aber Sie können Ihr Abonnement jederzeit kündigen. Lesen Sie unsere vollständige Rückerstattungsrichtlinie.

  • Ja, Coursera bietet für Kursteilnehmer, die sich die Kursgebühr nicht leisten können, finanzielle Unterstützung an. Bewerben Sie sich dafür, indem Sie auf den Link für finanzielle Unterstützung links unter der Schaltfläche „Anmelden“ klicken. Sie werden zum Ausfüllen eines Antrags aufgefordert und werden bei Genehmigung benachrichtigt. Diesen Schritt müssen Sie für jeden Kurs der Spezialisierung ausführen, auch für das Abschlussprojekt. Mehr erfahren

  • Für diesen Kurs gibt es keine akademischen Leistungspunkte, doch Hochschulen können nach eigenem Ermessen Leistungspunkte für Kurszertifikate vergeben. Wenden Sie sich an Ihre Einrichtung, um mehr zu erfahren. Online-Abschlüsse und Mastertrack™-Zertifikate auf Coursera bieten die Möglichkeit, akademische Leistungspunkte zu erwerben.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..