Why Regularization Reduces Overfitting?

video-placeholder
Loading...
Lehrplan anzeigen

Kompetenzen, die Sie erwerben

Tensorflow, Deep Learning, Mathematical Optimization, hyperparameter tuning

Bewertungen

4.9 (61,593 Bewertungen)

  • 5 stars
    88,21 %
  • 4 stars
    10,60 %
  • 3 stars
    1 %
  • 2 stars
    0,11 %
  • 1 star
    0,05 %

AM

8. Okt. 2019

I really enjoyed this course. Many details are given here that are crucial to gain experience and tips on things that looks easy at first sight but are important for a faster ML project implementation

CV

23. Dez. 2017

Exceptional Course, the Hyper parameters explanations are excellent every tip and advice provided help me so much to build better models, I also really liked the introduction of Tensor Flow

Thanks.

Aus der Unterrichtseinheit

Practical Aspects of Deep Learning

Discover and experiment with a variety of different initialization methods, apply L2 regularization and dropout to avoid model overfitting, then apply gradient checking to identify errors in a fraud detection model.

Unterrichtet von

  • Placeholder

    Andrew Ng

    Instructor

  • Placeholder

    Kian Katanforoosh

    Senior Curriculum Developer

  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Durchsuchen Sie unseren Katalog

Melden Sie sich kostenlos an und erhalten Sie individuelle Empfehlungen, Aktualisierungen und Angebote.