Choosing the Number of Principal Components

video-placeholder
Loading...
Lehrplan anzeigen

Kompetenzen, die Sie erwerben

Logistic Regression, Artificial Neural Network, Machine Learning (ML) Algorithms, Machine Learning

Bewertungen

4.9 (166,175 Bewertungen)

  • 5 stars
    92,40 %
  • 4 stars
    6,89 %
  • 3 stars
    0,47 %
  • 2 stars
    0,08 %
  • 1 star
    0,14 %

ZL

6. Dez. 2015

Filled StarFilled StarFilled StarFilled StarFilled Star

The course is well organised, with cutting edge knowledge ready to use in our information era. And Andrew was really decent with clear illustration and explanations. I really enjoy taking this course!

TD

30. Okt. 2021

Filled StarFilled StarFilled StarFilled StarFilled Star

Thank you very much for the excellent lectures. I am just wondering about the back propagation algorithm. When we calculate the errors backward, why do we use matrices theta instead of their inverses.

Aus der Unterrichtseinheit

Dimensionality Reduction

In this module, we introduce Principal Components Analysis, and show how it can be used for data compression to speed up learning algorithms as well as for visualizations of complex datasets.

Unterrichtet von

  • Placeholder

    Andrew Ng

    Instructor

Durchsuchen Sie unseren Katalog

Melden Sie sich kostenlos an und erhalten Sie individuelle Empfehlungen, Aktualisierungen und Angebote.