Activity Recognition using Python, Tensorflow and Keras

Learn about data augmentation.
Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data.
Learn about data augmentation.
Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data.
Note: The rhyme platform currently does not support webcams, so this is not a live project. This guided project is about human activity recognition using Python,TensorFlow2 and Keras. Human activity recognition comes under the computer vision domain. In this project you will learn how to customize the InceptionNet model using Tensorflow2 and Keras. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special Feature: 1.Manually label images. 2. Learn how to use data augmentation normalization. 3. Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Python Programming
Tensorflow
cognitive data science
keras
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Learn how to normalize data to improve accuracy of the final results.
Learn how to fine tune the model to improve it's accuracy.
Learn how to apply transfer learning using InceptionNet V3.
Learn how to augment data to prevent overfitting of the model.
Learn how to label data manually as 0 or 1.
Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich
Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.
Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.
Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.
Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.
Für angeleitete Projekte ist kein Auditing verfügbar.
Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.
Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.
Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.