Analyze Survey Data using Principal Component Analysis

4.0
Sterne
35 Bewertungen
von
Coursera Project Network
In diesem Kostenloses angeleitetes Projekt werden Sie:

Understand the fundamentals of Principal Component Analysis (PCA) and identify opportunities to combine variables.

Conduct correlation testing with various sets of variables in Google Sheets.

Combine highly correlated variables, visualize the data, and consider next steps in Google Sheets.

Präsentieren Sie diese praktische Erfahrung in einem Vorstellungsgespräch

Clock2 hours
AdvancedFortgeschritten
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

Survey data sets are often deceptively complex because surveys collect a wide variety of data covering a wide variety of topics and experiences. To further the complexity of survey data, the respondents answering the questions come from a wide variety of backgrounds and stages in their customer journey. It is reasonable that it would be a challenge to boil down survey data into actionable insights because it can be deceptively complex. With large sets of data, Principal Component Analysis or PCA is a useful tool that reduces and transforms variables to a leaner form that allows for a speedier analysis. In this project you will gain hands-on experience with the principles of Principal Component Analysis using survey data. To do this you will work in the free-to-use spreadsheet software Google Sheets. By the end of this project, you will be able to confidently apply Principal Component Analysis concepts to transform large sets of variables into a leaner set of data that still contains the most relevant information. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Anforderungen

Familiarity with spreadsheet software, factor analysis, and correlation testing. "Design a Factor Analysis Using Survey Data" is recommended.

Kompetenzen, die Sie erwerben werden

  • Survey Methodology
  • Mining Insights
  • Business Insights
  • Data Analysis
  • Principal Component Analysis (PCA)

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Review the fundamentals of Principal Component Analysis (PCA) and combining variables.

  2. Identify use cases for PCA and refine variable selection for the project.

  3. Access Google Sheets, import survey data, and examine variables that are likely correlated.

  4. Identify variables of interest and conduct a correlation test.

  5. Compare results and review the process of correlation testing.

  6. Combine highly correlated variables, create a visualization, and consider next steps.

  7. Access the ClustVis webtool for visualizing clustering and multivariate data.

  8. Build a PCA model with Heart data and run a Principal Component Analysis

  9. Compare results and review PCA with multivariate data from multiple sources and interpret the findings in ClustVis.

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Dozent

Bewertungen

Top-Bewertungen von ANALYZE SURVEY DATA USING PRINCIPAL COMPONENT ANALYSIS

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.