Basic Artificial Neural Networks in Python

4.2
Sterne
39 Bewertungen
von
Coursera Project Network
1,773 bereits angemeldet
In diesem angeleitetes Projekt werden Sie:

Generate a sample dataset using Scikit-Learn.

Implement an activation function and feed-forward propagation in a multi-layer ANN in Python code

Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

Clock2 hours
IntermediateMittel
CloudKein Download erforderlich
VideoVideo auf geteiltem Bildschirm
Comment DotsEnglisch
LaptopNur Desktop

In this 1-hour long project-based course, you will learn basic principles of how Artificial Neural Networks (ANNs) work, and how this can be implemented in Python. Together, we will explore basic Python implementations of feed-forward propagation, back propagation using gradient descent, sigmoidal activation functions, and epoch training, all in the context of building a basic ANN from scratch. All of this will be done on Ubuntu Linux, but can be accomplished using any Python I.D.E. on any operating system. We will be using the IDLE development environment to write a single script to code our simple ANN. We will avoid using advanced frameworks such as Tensorflow or Pytorch, for educational purposes. Note that the resulting ANN we build will be use-case agnostic and be provided with dummy inputs. Hence, while the ANN we build and train today may appear to be a useless demonstration, it can easily be adapted to any type of use case if given proper, meaningful inputs. I would encourage learners to experiment- How easy is it to add more layers without using frameworks like Tensorflow? What if we add more nodes? What limitations do we come across? The learner is highly encouraged to experiment beyond the scope of the course. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Kompetenzen, die Sie erwerben werden

Deep LearningArtificial Neural NetworkPython ProgrammingPropagationTensorflow

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Generate a dataset using Scikit-Learn

  2. Plot generated sample dataset to a graph using pyplot

  3. For each layer, multiply inputs by randomly generated weights

  4. For each layer, calculate the dot products of our two-dimensional sample features

  5. Write a sigmoidal activation function in Python and pass the dot product of our features through it before passing as input to the next layer to accomplish feed-forward propagation

  6. Write a cost function in Python based on the Mean Squared Error method

  7. Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

Ablauf angeleiteter Projekte

Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich

Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.

Bewertungen

Top-Bewertungen von BASIC ARTIFICIAL NEURAL NETWORKS IN PYTHON

Alle Bewertungen anzeigen

Häufig gestellte Fragen

Häufig gestellte Fragen

  • Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.

  • Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.

  • Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Kursteilnehmern auf der ganzen Welt zu beeinflussen.

  • Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.

  • Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.

  • Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.

  • Für angeleitete Projekte ist kein Auditing verfügbar.

  • Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.

  • Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.

  • Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..