Cleaning and Exploring Big Data using PySpark
59 Bewertungen

4.396 bereits angemeldet
Learn how to clean your big dataset in PySpark
Learn how to explore big dataset in PySpark
Learn how to create visualizations from big dataset loaded in PySpark
59 Bewertungen
4.396 bereits angemeldet
Learn how to clean your big dataset in PySpark
Learn how to explore big dataset in PySpark
Learn how to create visualizations from big dataset loaded in PySpark
By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe. Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Cleaning
Python Programming
Data Visualization (DataViz)
Apache Spark
Exploratory Data Analysis
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Install Spark on Google Colab and load datasets in PySpark
Change column datatype, remove whitespaces and drop duplicates
Remove columns with Null values higher than a threshold
Group, aggregate and create pivot tables
Rename categories and impute missing numeric values
Create visualizations to gather insights
Ihr Arbeitsbereich ist ein Cloud-Desktop direkt in Ihrem Browser, kein Download erforderlich
Ihr Dozent leitet Sie in einem Video mit geteiltem Bildschirm Schritt für Schritt an.
von JA
23. März 2022fast and simple explanation about ow to start to work with Spak on Colab
von NN
22. Apr. 2022use case could be explained a little better, before actually going to the code
von AA
21. Aug. 2021Practical walk through of basic PySpark operations. Great quick-start to using Pyspark for data analysis
von SR
14. Dez. 2020More theory behind the functions used and concepts behind spark and how it works in a distributed way would've been more benefitting. Overall it was a worthy course.
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.
Sie können alle von Ihnen erstellten Dateien aus dem angeleiteten Projekt herunterladen und speichern. Zu diesem Zweck können Sie die Funktion „Dateibrowser“ verwenden, wenn Sie auf Ihren Cloud-Desktop zugreifen.
Bei angeleiteten Projekten ist keine Erstattung möglich. Lesen Sie unsere komplette Rückerstattungsrichtlinie.
Für angeleitete Projekte ist keine finanzielle Unterstützung verfügbar.
Für angeleitete Projekte ist kein Auditing verfügbar.
Oben auf der Seite können Sie auf das Erfahrungsniveau für dieses angeleitete Projekt klicken, um das vorausgesetzte Wissen anzuzeigen. Auf jedem Niveau führt der Dozent Schritt für Schritt durch das angeleitete Projekt.
Ja, alles, was Sie zum Abschließen Ihres angeleiteten Projekts benötigen, finden Sie auf einem Cloud-Desktop, der in Ihrem Browser verfügbar ist.
Sie lernen durch Praxis, indem Sie Aufgaben in einer Split-Screen-Umgebung direkt in Ihrem Browser erledigen. Auf der linken Seite des Bildschirms erledigen Sie die Aufgabe in Ihrem Arbeitsbereich. Auf der rechten Seite des Bildschirms sehen Sie einen Dozenten, der Sie schrittweise durch das Projekt führt.
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.